Faculdade de Ciências da Universidade de Lisboa

BASES PARA A CONSERVACÃO E GESTÃO DO COŖ̧O

(Capreolus capreolus, Linnaeus, 1758)

Relatório de estágio da Licenciatura em Recursos Faunísticos e Ambiente

Inês Morgado Antunes Barroso

Lisboa, Dezembro de 1994
"... nas mais rudes mantanhas da nossa terra, entre as unicas florestas sobreviventes do paig, sobre cujas frondes esucacam as aquias recaes, entre cujas urzes centenarias se escondem o corso e o jauali, em cujos cumes de aspecto inaccessiuel se suppõem refugiadas as ultimas cabras brawas da peninsula ...
... - Yereaz é hoje, fora de toda a duwida, a região do paiz mais abundante en caça grossa, representada pelo corso, que pullula pela matta desde a administração da serra por conta do Estado, até no porco brawo, que diariamente devasta as plantaçoes dos vales. Dem falar no lobo, na rapoza a na aquia, que cinda infestam a serva e constituem o terror dos pastores (...) desde chans de Lama Longa, Prados e Lama de Momen, até Pitoes e Montalegre, nas ultimas vertentes do Derez, fronteras da Salliza e Iraz-os-Montes."
in Chestracĩa Portuguesa de 3 de Agosto de 1908

AGRADECIMENTOS

Ao Instituto da Conservação da Natureza por me ter proporcionado a realização deste trabalho.
À Dr. ${ }^{\text {a }}$ Maria João Cabral por ter aceite coordenar este trabalho, pelo seu tempo, dedicação, empenho e carinho, bem haja.

Ao Eng. Paulo Carmo pela solicita e entusiasta co-coordenação sempre demonstrada incluindo nos mais pequenos pormenores, bem haja.

Ao Sérgio Borges pela disponibilidade e companheirismo revelados nos intermináveis dias de trabalho de campo.

À Professora Margarida Santos-Reis e ao Professor Francisco Petrucci-Fonseca por terem despertado em mim o interesse por este trabalho, pela articulação ICN/FCUL que possibilitaram e pela disponibilidade demonstrada.

Ao Parque Nacional da Peneda-Gêres na pessoa do seu director Eng. Tito Costa, dos Eng. Paulo Cunha, Marcos Liberal, Luís Macedo e do Dr. Fernando Gonçalves, dos guardas e vigilantes da Natureza e demais funcionários, em especial da delegação de Terras de Bouro, pela sempre pronta e afável colaboração prestada ao longo da minha estadia no Parque.

Ao António Rebelo, sem o qual a realização deste trabalho não teria sido possível, por tudo o que me ensinou, por toda a generosa disponibilidade, pela constante boa disposição e companheirismo nas intermináveis travessias de serras e vales, bem haja.

Aos residentes do Parque pela prontidão como colaboraram sempre que solicitados e pela forma acolhedora como me receberam.

A todos os funcionários da Divisão de Espécies Protegidas/ICN pela simpatia, empenho e disponibilidade que sempre manifestaram.

Aos Amigos e Familiares que directa e indirectamente me ajudaram com entusiasmo no decorrer deste ano de trabalho, em especial:

À Ana e ao Zé pelo apoio na revelação de fotografias e slides.
À Cristina, ao Luís e ao Tiago pela ajuda na introdução de dados no computador.
À Marta, ao Zé e ao Tó pela simpatica ajuda e companhia no trabalho de campo.
Ao tio Philippe por todo o seu empenho neste trabalho, no tratamento dos dados, processamento gráfico e montagem, pelas horas roubadas ao sono e seus afazeres. À tia Lena e primos, em especial ao Miguel, por todo o apoio e ternura com que me envolveram na dificil fase final do trabalho, bem hajam.

Aos meus Pais...com Amor.

Índice

1. RESUMO 1
2. INTRODUÇÃO 2
3. CARACTERIZAÇÃO DA ESPÉCIE 3
3.1 Origem e Evolução 3
3.2 Posição sistemática 3
3.3 Distribuição 4
3.4 Descrição geral 5
4. CARACTERIZAÇÃO DA ÁREA DE ESTUDO 8
5. ESTRATÉGIA DE OCUPAÇÃO DO ESPAÇO E DO TEMPO 11
5.1 Ritmo de actividade 12
6. Introdução 12
$\%$ Metodologia 12
\% Resultados e discussão 12
$\%$ Conclusões 13
5.2 Hábitos alimentares 13
\% Introdução 13
\% Metodologia 14
\% Resultados e discussão 14
\% Conclusões 18
5.3 Abrigo 19
$\%$ Introdução 19
$\%$ Metodologia 19
\% Resultados e discussão 19
\% Conclusões 20
5.4 Reprodução/Territorialidade 20
\% Introdução 20
\% Metodologia 22
\% Resultados e discussão 22
\% Conclusões 26
7. ESTRUTURA SOCIAL DA POPULAÇÃO 28
\% Introdução 28
\% Metodologia 28
\% Resultados e discussão 28
\% Conclusões 29
8. RELAÇÕES INTER-ESPECÍFICAS 30
9. FACTORES DE PERTURBAÇÃO 32

Índice (cont.)

Pág

9. DISTRIBUIÇÃO ACTUAL DO CORÇO NO P. N. DA PENEDA-GERÊS 33
9.1 Distribuição actual 33
$\%$ Introdução 33
\% Metodologia 33
\% Resultados e discussão 35
\% Conclusões 36
9.2 Biótopos de ocorrência 36
10. DISTRIBUIÇÃO POTENCIAL E ESTIMATIVA DE DENSIDADE 38
10.1 Distribuição potencial 38
\% Introdução 38

- Método das quadrículas: 39
$\%$ Metodologia 39
\% Resultados e discussão 40
\% Conclusões 44
- Método HEP 44
\% Metodologia 44
\% Resultados e discussão 45
\% Conclusões 45
10.2 Estimativa de Densidade 45
\% Introdução 45
\% Metodologia 46
\% Resultados e discussão 46
\% Conclusões 47

11. MEDIDAS DE CONSERVAÇÃO E GESTÃO 48
12. CONSIDERAÇÕES FINAIS 50
13. BIBLIOGRAFIA 51

1. RESUMO

O presente trabalho tem por objectivo contribuir para o conhecimento da ecologia do corço (Capreolus capreolus) em Portugal, mais especificamente no Parque Nacional da Peneda-Gerês.

O âmbito do estudo foi limitado às vertentes da estratégia de ocupação do espaço e do tempo, das relações inter-específicas, dos factores de perturbação, das distribuições actual e potencial e da estimativa de densidade do corço nesta zona geográfica.

A abordagem seguida para este estudo consistiu no levantamento de dados, através de observações directas e indirectas dos animais durante o trabalho de campo, que decorreu de Outubro de 1993 até Outubro de 1994. Paralelamente, foi realizada uma recolha bibliográfica na Faculdade de Ciências de Lisboa, no Instituto de Conservação da Natureza e no Instituto Florestal. Na fase final, foi realizado o tratamento estatístico dos dados recolhidos e a elaboração do presente relatório.

Este trabalho insere-se ainda, no Projecto Conservação do Lobo em Portugal do Instituto da Conservação da Natureza, desenvolvido com o apoio financeiro do programa comunitário Life.

As principais áreas estudadas foram, no campo da estratégia de ocupação do espaço e do tempo, o ritmo de actividade, os hábitos alimentares, o abrigo e a reprodução / territorialidade do corço. A distribuição actual, levantada apenas numa parte do parque, foi comparada com a distribuição potencial elaborada pelo método das quadrículas. A estimativa de densidade foi obtida através de observações directas e indirectas e pelo método HEP.

As principais conclusões a que chegámos são que o corço é um animal solitário e territorial, com principal actividade ao amanhecer e com uma alimentação variada. Quanto à distribuição geográfica, encontra-se espalhado um pouco por todo o Parque, embora de forma heterogénea. As áreas avaliadas apresentam, em média, potencialidades intermédias do habitat para o corço, facto confirmado pelas nossas observações no terreno. A estimativa de densidade obtida é de 7 a 8 animais por 100 ha para áreas com potencialidades intermédias.

Os principais factores de perturbação revelaram ser o furtivismo, o pastoreio, a destruição do habitat e o turismo.

Com base nas conclusões deste trabalho, são propostas algumas medidas de conservação e gestão para o habitat e para a espécie. Em relação ao habitat, destaca-se o ordenamento silvopastoril, o controlo de incêndios e acções de repovoamentos com folhosas autóctones. Em relação à espécie, destaca-se o controlo de cães assilvestrados e do furtivismo.

2. INTRODUÇÃO

O corço (Capreolus capreolus) é uma das três espécies de cervídeos existentes em Portugal, além do veado (Cervus elaphus) e do gamo (Cervus dama). No nosso País o corço tem o estatuto de espécie não ameaçada, está incluído no Anexo III da Convenção de Berna, sendo ainda uma espécie cinegética (Decreto-Lei $n^{\circ} 251 / 92$ de 12 de Novembro) estando a sua caça restrita ao Regime Cinegético Especial (RCE), ou seja, sujeita a planos de ordenamento e exploração.

Este cervídeo constitui, em Portugal, uma das principais presas naturais do lobo (Canis lupus), espécie estritamente protegida ao abrigo da legislação nacional (Lei $n^{\circ} 90 / 88$ de 13 de Agosto Protecção ao lobo ibérico), incluída no Anexo II da Convenção de Berna e Anexo II da Directiva 92/43/CEE (Directiva Habitats).

O presente trabalho insere-se num programa sobre a conservação do lobo, em curso na Divisão de Espécies Protegidas do Instituto da Conservação da Natureza e desenvolvido em estreita articulação com algumas áreas protegidas, entre as quais o Parque Nacional da Peneda-Gerês.

Em Portugal, embora o corço tenha sido objecto de vários estudos desde a década de 70 (Bessa, 1972; Pereira \& Moço, 1977; Magalhães \& Fonseca, 1978; Petrucci-Fonseca, 1978; Pereira \& Pereira, 1980; Pereira, 1984; Pereira, 1985; Cabral et al., 1987; Carmo et al., 1989; Boutin, 1990 e Moreira, 1992), alguns aspectos da sua ecologia continuam por esclarecer. Deste modo, um melhor conhecimento da sua biologia e etologia irá contribuir para a aplicação de medidas adequadas à conservação e fomento da espécie, que constituirão também medidas para a conservação do lobo em Portugal.

Pretendemos com este trabalho dar continuidade ao estudo protagonizado por técnicos do I.C.N., nomeadamente pela Dr ${ }^{\text {a }}$ Maria João Cabral e Eng. Paulo Carmo, desde 1987 pelo que nos propomos actualizar a carta de distribuição do corço no Parque Nacional e elaborar, embora parcialmente, uma carta de potencialidades do habitat. Para além destes aspectos, constituem ainda objectivos do presente estudo a caracterização da estratégia de ocupação do espaço e do tempo pelo corço (ritmo de actividade, alimentação, abrigo e reprodução/territorialidade), a estimativa de densidades populacionais nas áreas de principal ocorrência da espécie e o conhecimento da estrutura social da população e relações inter-específicas. Por último, mas não menos importante, propomo-nos proceder à identificação de factores de perturbação e apresentação de medidas de conservação e gestão da referida população do corço.

3. CARACTERIZAÇÃO DA ESPÉCIE

3.1 Origem e Evolução

Considerado como o cervídeo mais antigo do continente Europeu, o corço tem registado ao longo da História uma presença discreta (Boisaubert \& Boutin, 1988).

Com base em dados paleontológicos a existência de Ungulados remonta à época geológica do Eoceno (-65 a -37 milhões de anos), embora com formas muito diferentes das actualmente conhecidas (por exemplo, as espécies primitivas apoiavam-se sobre os quatro dedos). É no Mioceno (-27 a -7 milhões de anos) que surgem formas mais evoluídas, que caminhavam sobre dois dedos (Boisaubert \& Boutin, 1988). Segundo os mesmos autores, consideram-se estes os ancestrais dos cervídeos, embora sendo desprovidos de hastes e possuindo os caninos da mandíbula superior fortemente desenvolvidos, como em algumas espécies actuais (é exemplo Hydropotes inermis, originário de terrenos alagadiços da China). Parker et al. (1987) refere que os cervídeos datam do Oligoceno e Chapman (1975) que a maior evolução daqueles ocorreu durante o Plioceno.

No final do Plioceno e princípio do Pleistoceno (-1 milhão de anos), surgem alguns cervídeos com hastes ramificadas - sinal de uma evolução, tendo contudo desaparecido todos no fim do Pleistoceno Inferior (300 000 anos) (Delpech \& Heintz, 1980 in Boisaubert \& Boutin, 1988). Apenas uma destas espécies apresentava algumas analogias - tamanho e conformação das hastes - com o corço actual. Corbet \& Harris (1991) refere que o verdadeiro corço apareceu no Pleistoceno Médio (-200000 anos).

Pela análise de jazidas foi confirmada a presença de Capreolus capreolus durante o Riss, e embora no início fosse abundante, no final tornou-se rara com o arrefecimento. Durante o interglaciar Riss-Würm, a espécie persistiu, permanecendo próspera no Pleistoceno Superior, período após o qual voltou a declinar. A presença de corço nesta época, parecia estar intimamente relacionada com a existência de coberto florestal (Boisaubert \& Boutin, 1988).

No Paleolítico, as representações artísticas de corço são raras, assim como no Mesolítico (de -9000 a - $\mathbf{- 3} 000$ anos a.C.), o que poderá ser justificado pelo pouco interesse dos caçadores por esta espécie florestal com carácter solitário (Boisaubert \& Boutin, 1988).

3.2 Posição sistemática

Corbet \& Harris (1991) apresentam a seguinte clasificação taxonómica para o corço:
Classe Mammalia
Ordem Artiodactyla
Subordem Ruminantia
Família Cervidae, Gray, 1821
Género Capreolus, Frisch, 1775
Espécie Capreolus capreolus, Linnaeus, 1758

A principal característica ao nível da ordem reside na estrutura das extremidades dos membros, que apresentam o segundo e terceiro dedos igualmente desenvolvidos (entre os quais passa o eixo do membro) e os dedos laterais reduzidos. Os animais pertencentes à subordem Ruminantia,
caracterizam-se por apresentarem um estômago compartimentado em quatro sectores e pela ausência de incisivos na mandíbula superior (Corbet \& Harris, 1991).

A família dos cervídeos caracteriza-se pela presença das hastes estar condicionada aos machos (com excepção da rena) e de estas se renovarem anualmente. Segundo Gama (1957) a forma dos vestígios dos dedos laterais (um dos critérios de classificação dos cervídeos em duas sub-famílias) permite designar os animais desta família como Telemetacarpianos e Plesiometacarpianos. O corço pertence ao primeiro grupo, tal como a rena e o alce, por apresentarem apenas as porções distais dos metacarpos e metatarsos laterais, enquanto a porção proximal se encontra atrofiada. No segundo grupo ocorreu o fenómeno inverso: só a porção proximal das referidas estruturas foi mantida. É com base neste critério que se pensa que o corço tenha aparecido primeiro do que o veado e gamo (Parker et al., 1987; Boisaubert \& Boutin, 1988).

O género Capreolus está presente apenas no Continente Euro-asiático. Gama (1957) indica que em Portugal ocorre a subespécie Capreolus capreolus canus Miller. Whitehead (1993) propõe a existência de uma única espécie e três sub-espécies, sendo a europeia designada por Capreolus capreolus capreolus (Linnaeus).

Segundo outros autores este género, divide-se em duas espécies, em função da sua repartição geográfica: C. capreolus, habitualmente designado como corço da Europa, que se encontra na Europa e Ásia Menor e C. pygargus, Pallas (1771), conhecido como corço da Sibéria, que se distribui desde os Montes Urais, a Oeste, até à foz do Rio Amur, a Este, assim como na Coreia e na China, sobretudo na Manchúria e nalgumas províncias do Nordeste (Boisaubert \& Boutin, 1988).

Os nomes vulgares em Portugal são corço e corça, respectivamente para macho e fêmea. No entanto na área do Parque são habitualmente utilizados os termos "veado" para o macho e corço ou corça, ou com menor frequência cabra brava, para a fêmea

3.3 Distribuição

O corço, após a sua distribuição ter sido alvo de fortes flutuações durante o quaternário, aquando das glaciações, encontra-se actualmente disperso pela Europa, na sua quase totalidade (Corbet \& Harris, 1991). O principal factor limitativo, nos últimos séculos foi o Homem, tendo conduzido a um redução drástica no século XIX. Contudo o corço conseguiu recolonizar o seu território original, por expansão natural ou por repovoamentos (Boisaubert \& Boutin, 1988).

A espécie encontra-se largamente representada na Europa de Leste e Central. Na Escandinávia, o corço encontra-se para além do círculo polar árctico (67° de latitude norte). As populações meridionais apresentam em comum, uma localização em maciços montanhosos: em Itália, nos Apeninos, na Toscânia, nos Alpes. A espécie está ausente nas ilhas mediterrânicas - Sicília, Sardenha, Córsega e Baleares (Boisaubert \& Boutin, 1988).

A análise da figura 1 sugere que uma tal área de repartição pressupõe grandes capacidades de adaptação a diferentes habitats.

Na Península Ibérica, o corço ocupa principalmente a parte norte de ambos os países. Em Espanha distribui-se pelos Montes Cantábricos, Montes Ibéricos, Serra Morena e mais a sul na Serra de Ronda ($36^{\circ} 5^{\prime}$ de latitude), na Andaluzia (Boisaubert \& Boutin, 1988).

Em Portugal a área de distribuição do corço está actualmente confinada à zona a norte do Rio Douro (Pereira \& Pereira, 1980), da qual se destacam: Serras da Peneda, Amarela, do Gerês, da Cabreira, do Marão, de Montesinho, da Coroa e da Nogueira (Boutin, 1990). Segundo este, é provável que o corço tenha ocorrido entre os Rios Tejo e Douro, num passado recente. Inquéritos realizados em 1976/77 por Pereira \& Pereira (1980) assinalaram uma possível presença de corço na região de Barcelos e de Torre de Moncorvo (anexo I-1).

Por se tratar de uma espécie cinegética de grande valor e interesse, a sua introdução em áreas vedadas tem-se verificado um pouco por todo o País, no âmbito do RCE.

3.4 Descrição geral

O corço, o cervídeo nativo da Europa com menores dimensões (Burton, 1991), caracteriza-se por apresentar um corpo relativamente pequeno em relação aos membros finos e longos, sendo os posteriores mais compridos do que os anteriores. O nariz preto e o queixo branco são considerados ainda, caracteres distintivos da espécie (Corbet \& Harris, 1991; Gama, 1957).

A esperança média de vida é superior a 15 anos. Consideram-se crias até aos seis meses e atingindo a maturidade aos dois anos (Burton, 1991). Um animal a partir dos dez anos é considerado velho. Em cativeiro podem viver cerca de vinte anos. Como é próprio dos Ungulados, a sobrevivência é maior nas fêmeas (Gaillard et al., 1985).

Num estudo realizado em França, Boisaubert \& Boutin (1988), verificaram que no estado adulto, o comprimento total dos animais desta espécie, varia entre 100 e 125 cm , e a altura ao garrote, entre 60 a 80 cm , não se registando diferenças significativas no tamanho entre machos e fêmeas. O peso médio de um adulto varia de 20 a 25 kg , mas em função da disponibilidade alimentar, este parâmetro pode apresentar valores entre 18 e 36 kg . A fêmea pesa normalmente menos 2 a 3 kg do que o macho, relação válida quando os animais habitam um mesmo biótopo. Para Portugal são apontados como valores médios 120 cm para o comprimento total, 70 cm para a altura ao garrote e 15 a 30 kg para o peso (SNPRCN, 1990). Na área do Parque Nacional foi encontrado, a 30 de Abril deste ano, um animal morto que pesava $28,7 \mathrm{~kg}$ e media 108 cm de comprimento total.

O corço apresenta duas pelagens: uma de Inverno, formada por pêlos longos, espessos, de seç̧ão achatada exibindo o animal um tom de castanho-acinzentado; e uma de Verão constituída por pêlos curtos, delgados, de secção arredondada, que conferem ao animal um tom de castanhoavermelhado (Gama, 1957; Boisaubert \& Boutin, 1988). Em ambas as fases a parte inferior é mais
clara que o dorso e o escudo anal ou espelho destaca-se pela cor esbranquiçada. A forma deste varia nos dois sexos: nos machos é semelhante a um "rim" invertido e nas fềmeas a um "coração", também invertido.

Os dados recolhidos sobre a pelagem dos animais observados durante o presente estudo, indicam que a mudança da pelagem de Inverno para a pelagem de Verão ocorre entre Abril e Maio. Num estudo levado a cabo na Serra da Nogueira, Pereira e Moço (1977) verificaram que esta mudança ocorre em Maio e Junho. Em relação à época em que ocorre o processo inverso, os dados recolhidos permitem apenas afirmar que no princípio de Setembro foi observado um animal com cor castanha clara e que os animais observados a partir de 6 de Novembro, apresentavam todos cor acinzentada. Pereira \& Moço (1977) registaram esta mudança em Setembro-Outubro. Ainda segundo estes e Gama (1957), as crias apresentam uma pelagem completamente diferente da dos adultos, caracterizando-se por pequenas manchas claras sobre um fundo castanho não uniforme, o que thes confere um grande mimetismo.

Como já referido os machos apresentam hastes, que se renovam anualmente. A evolução das hastes revela uma grande variabilidade a nível individual e em cada indivíduo a nível anual. Cada haste pode apresentar um número máximo de três ramificações, cujas características, como porte e beleza, estão relacionadas, entre outros aspectos, com a idade, condição alimentar e sanidade do animal. O apogeu do desenvolvimento ocorre, segundo os indivíduos, entre os três e os cinco anos de idade. A medida que os animais envelhecem as hastes engrossam, podendo verificar-se, mais tarde, uma regressão no número das ramificações e na conformação das mesmas.

Apresentamos as medidas de quatro hastes, duas das quais foram encontradas no solo (I e II) e as outras duas pertencentes ao animal que foi encontrado morto (III e IV).

Haste	Data	Lado	a $(\mathbf{c m})$	b $(\mathbf{m m})$	Número de pontas	dadade provável do individuo
I		D	18,0	11,2	2	1 ano
II	17-Nov-94	E	20,2	14,0	3	≥ 3 anos
III	30-Abr-94	D	9,5	13,3	2	1 ano
IV	30 -Abr-94	E	9,9	14,5	2	1 ano

A ausência de incisivos (e normalmente de caninos) na mandíbula superior, foi compensada com o desenvolvimento de um tecido fibroso cuja função é apoiar os incisivos inferiores (Boisaubert \& Boutin, 1988). A fórmula dentária apresentada por Corbet \& Harris (1991) é: 0.0.3.3/3.1.3.3.. Gama (1957) refer que apresença de caninos na maxila superior ocorre nos machos raramente.

Este cervídeo caracteriza-se ainda, por uma excelente e selectiva capacidade auditiva e uma boa capacidade olfativa, detectando melhor movimentos do que formas (Corbet \& Harris, 1991; Baufle, 1975 in Boisaubert \& Boutin, 1988)

Quanto à comunicação, Boisaubert \& Boutin (1988) referem que os adultos emitem um latido semelhante ao de um cão. De um modo geral, este é repetido várias vezes em intervalos regulares e pode traduzir inquietação/perturbação ou ameaça/perigo, sendo emitido num encontro com o Homem, um congénere ou um eventual predador. A fêmea na altura do cio emite um som semelhante ao emitido por Buteo buteo, tal como as crias (embora mais fraco) (McPheat, 1990).

Existem outros modos de comunicação que permitem aos animais afirmar a sua posição hierárquica ou demarcar o espaço em que vivem. Deste modo os machos assinalam a sua presença pelo uso de secreções de glândulas cutâneas, que possuem na base das hastes e entre as unhas, através de marcações (remoção da casca de uma área vertical e contínua do caule), resultantes dos animais esfregarem a região frontal contra a vegetação e de esgaravatadelas, resultantes dos animais rasparem o solo com as patas anteriores. Estas marcas de natureza olfativa e visual parecem permitir o reconhecimento entre indivíduos e informá-los sobre o estado fisiológico de cada um (Diot, 1985 in Boisaubert \& Boutin, 1988).

4. CARACTERIZAÇÃO DA ÁREA DE ESTUDO

O Parque Nacional da Peneda-Gerês (PNPG), com uma área aproximada de 70000 hectares, localiza-se no Norte de Portugal (entre os $41^{\circ} 41^{\prime}$ e os $42^{\circ} 05^{\prime}$ de latitude Norte e os $07^{\circ} 53^{\prime}$ e os 08° 25^{\prime} de longitude Oeste), ocupando o limite Nordeste e Noroeste das províncias do Minho e de Trás--os-Montes e Alto Douro, respectivamente (anexo I-1).

Segundo Rivas-Martinez (1985 in Serra \& Carvalho, 1989) o sopé da Serra do Gerês, conjuntamente com o sopé da Serra da Cabreira, terras baixas das bacias do Tâmega, Ave e Cávado constituem a fronteira entre as Regiões Euro-Siberiana e Mediterrânica.

Do ponto de vista orográfico, a área em estudo engloba o prolongamento da cadeia dos Montes Cantábricos, destacando-se as Serras da Peneda, do Soajo, Amarela e do Gerês e os Planaltos de Castro Laboreiro, a Norte e o da Mourela, a Este. A altitude varia entre os 140 e os 1545 m .

A hidrografia é caracterizada por cursos de água com regime, de uma forma geral, torrencial devido a precipitações elevadas e ao relevo acentuado. Os vales são fundos e apertados, com perfis longitudinais de grande declive e com inúmeras quebras. Um conjunto importante de micro-habitats é proporcionado por estas irregularidades nos leitos dos cursos de água e alternâncias de rápidos e remansos (SNPRCN, 1991). Destacam-se os Rios Laboreiro, Peneda, Lima, Froufe, Homem, Caldo, Arado, Pincães, Fafião, Cabril e Mau. As principais bacias hidrográficas existentes na região em estudo são as bacias dos Rios Lima e Cávado.

A geologia é dominada pelos granitos de origem Hercínica, encontrando-se algumas manchas de xistos argilosos muito metamorfisados. Ocorrem ainda, formações sedimentares (Serra \& Carvalho, 1989). O território faz parte do Maciço Antigo acantonado a Noroeste da Meseta Ibérica.

O Parque Nacional insere-se numa região de transição do clima mediterrânico de feição oceânica e do clima mediterrânico de feição continental (SNPRCN, 1991).

A temperatura média anual do ar varia entre 9 e $14^{\circ} \mathrm{C}$, localizando-se os valores médios entre 3,5 e $9^{\circ} \mathrm{C}$ em Janeiro e 17 e $20^{\circ} \mathrm{C}$ em Julho.

Surgem na região inúmeros micro-climas, com origem nas variações de altitude e características topográficas que influenciam localmente cada um dos factores climáticos com expressão regional.

A pluviosidade média anual é de cerca de 2000 mm , constituindo a região em estudo, a mais pluviosa de Portugal, e uma das mais pluviosas da Europa. Durante os meses de Inverno é comum a ocorrência de queda de neve nos locais mais elevados.

As serras do Noroeste da Península Ibérica, pela sua situação extremo-ocidental e continuidade com a Região Mediterrânea, apresentaram no passado uma vegetação climácica que diferiu do resto da vegetação atlântica da Europa. Com o objectivo de definir fitossociologicamente estas diferenças, Braun-Blanquet, Pinto da Silva \& A. Rozeira estabeleceram, em 1965, uma nova aliança, designada por Quercion occidentale. Nesta aliança, dominam dois carvalhos de folha caduca, sendo eles Quercus robur (carvalho alvarinho) e Quercus pyrenaica (carvalho negral).

Na área em estudo existem algumas manchas relativamente pouco alteradas, das quais se destacam a Mata do Ramiscal, os Carvalhais da Peneda, a Mata do Cabril, a Mata de Albergaria e a Mata do Beredo. Para além destas, encontram-se ainda pequenos bosquetes, espalhados pelo Parque, normalmente associados a linhas de água e/ou vales encaixados (Serra \& Carvalho, 1989).

Às matas de carvalho alvarinho, associam-se espécies de todos os estratos, entre as quais se encontram o azereiro (Prunus lusitanicus), o padreiro (Acer pseudoplatanus), o medronheiro (Arbutus unedo), o azevinho (Ilex aquifolium), a pereira brava (Pyrus spp.), o zangarinho (Frangula alnus), o pilriteiro (Crataegus monogyna), as giestas (Cytisus spp.), as urzes (Erica spp. e Calluna vulgaris), as silvas (Rubus spp.), a gilbardeira (Ruscus aculeatus), a uva-do-monte (Vaccinium myrtillus) e a hera (Hedera helix). Estes carvalhais têm sido progressivamente substituídos por matos e culturas silvícolas intensivas, como resultado de diversas acções humanas permitidas pela sua localização e acesso fácil.

As matas de carvalho negral, das quais se tem um menor conhecimento na área abordada, surgem com o aumento de altitude e secura ambiental, em desfavor do carvalho alvarinho. A diversidade de espécies associadas aos povoamentos de Quercus pyrenaica é aparentemente menor, quando comparada com a presente em povoamentos de Quercus robur.

A vegetação ribeirinha caracteriza-se pela ocorrência de salgueiros (Salix spp.), freixos (Fraxinus angustifolia), vidoeiros (Betula spp.), cornogodinho (Sorbus aucuparia) e teixo (Taxus baccata), entre outras.

Segundo Serra \& Carvalho (1989), os matos constituem uma formação vegetal resultante da degradação da floresta climácica da Quercion occidentale. Habitualmente designados por urzais e tojais são constituídos na sua maioria por ericáceas (Erica spp. e Calluna vulgaris) e por leguminosas arbustivas (Cytisus spp., Ulex spp., e outras), respectivamente. Estes pertencem à classe Calluno-Ulicetea, característica do Domínio Atlântico da Europa Ocidental (Sul das Ilhas Britânicas, Oeste da França e Norte e Noroeste da Península Ibérica).

Espalhados pelo Parque surgem povoamentos de resinosas, das quais o pinheiro de casquinha (Pinus sylvestris) é a única espécie autóctone. Chamaecyparis lawsoniana e Pinus pinaster constituem as espécies mais comuns utilizadas nas plantações, durante o período de administração florestal.

Com maior incidência no vale do Rio Gerês, existem densos povoamentos de espécies exóticas com carácter infestante (Acacia dealbata e Acacia melanoxylon), cuja propagação, em detrimento de espécies autóctones, se tem revelado de difícil controlo.

Os lameiros ou prados de lima, elemento característico da paisagem do Norte do País representam formações seminaturais, uma vez que apresentando espécies autóctones, sofrem a acção do Homem com o objectivo de uma maior rentabilidade. Estes surgem, normalmente, em aglomerados na
proximidade de povoações. Verifica-se ainda a ocorrência de prados naturais, espalhados pelos mais variados biótopos.

Do ponto de vista faunístico, o Parque Nacional é de extraordinário interesse pela grande diversidade de espécies, entre as quais se destacam numerosos endemismos e espécies raras, ameaçadas ou já extintas noutras áreas do País. Até ao momento foram recenseadas 226 espécies de vertebrados, cerca de 50% das espécies presentes no nosso País, das quais 198 são espécies internacionalmente protegidas pela Convenção de Berna e 65 pertencem à lista de espécies ameaçadas do Livro Vermelho dos Vertebrados de Portugal -vol. I e II (SNPRCN, 1993). Entre os mamíferos ocorrem no Parque Nacional a toupeira-de-água (Galemys pyrenaicus), o esquilo (Sciurus vulgaris), o lobo (Canis lupus), a raposa (Vulpes vulpes), o arminho (Mustela erminea), o toirão (Mustela putorius), a marta (Martes martes), a lontra (Lutra lutra), o gato bravo (Felis silvestris), o javali (Sus scrofa), o corço (Capreolus capreolus) e o garrano (Equus caballus). Entre os répteis destaca-se a víbora-cornuda (Vipera latastei) e a víbora de Seoane (Vipera seoanei) e entre os anfibios, a salamandra-lusitanica (Chioglossa lusitanica) e o tritão-palmado (Triturus helveticus). Da classe das aves ocorre um elevado número de espécies entre as quais se destaca o falcão-abelheiro (Pernis apivorus), a águia cobreira (Circaetus gallicus) e a águia real (Aquila chrysaetos). A lampreia (Petromyzon marinus), o sável (Alosa alosa), a saboga (Alosa fallax), a pardelha (Rutilus arcasi), o salmão (Salmo salar) e a truta (Salmo trutta) constituem algumas das espécies pertencentes à classe dos peixes.

Em relação às actividades agrícolas predomina o cultivo do centeio, da batata e do milho, na maioria para auto-consumo. O pastoreio tem expressão durante todo o ano, embora com características distintas. De um modo geral, nos meses de Outono e Inverno o gado bovino, caprino e ovino regressa todos os dias ao estábulo, e é designado por rês; nos meses de Primavera e Verão, normalmente de Maio a Setembro, o gado bovino permanece na serra (com dimensão comunitária, sendo o conjunto destes animais conhecido por vezeira), deslocando-se diariamente apenas o gado caprino e ovino.

A exploração florestal tem particular expressão nos baldios. Cortes de limpeza, autorizados pelo Parque, ocorrem frequentemente e permitem o abastecimento de lenha às populações locais. É frequente a prática de queimadas em zonas de matos para obtenção de pastos.

Nas Serras da Peneda e do Soajo, as comunidades serranas praticam a transumância, pastoreando o gado em áreas distintas no Verão - nas encostas e planaltos, e no Inverno - nas pastagens junto às aldeias. Dos cerca de 40 lugares do concelho de Castro Laboreiro, apenas 6 são habitados durante todo o ano, constituindo os restantes 16 brandas e 18 inverneiras.

O território do Parque Nacional engloba 114 aldeias e cerca de 10000 habitantes.
Ao nível administrativo a área do Parque está dividida em três delegações: Delegação de Arcos de Valdevez (34280 ha) que abrange parcialmente os concelhos de Melgaço, de Arcos de Valdevez e de Ponte da Barca e Delegações de Terras de Bouro (15 968 ha) e de Montalegre (21174 ha) que abrangem os concelhos com os respectivos nomes (anexo I-1). Os terrenos incluídos na área do Parque são propriedade do Estado (10\%), propriedade privada (34\%) ou comunitários (56\%) (ICN, 1993).

5. ESTRATÉGIA DE OCUPAÇÃO DO ESPAÇO E DO TEMPO

O modo como uma espécie ocupa uma área é função da repartição, no espaço e no tempo, de diversos factores inerentes às características do habitat, da espécie e da população em estudo (no seu conjunto e a nível individual). A área regularmente frequentada por sum indivíduo, ou grupo de indivíduos é geralmente designada por domínio vital (Saint-Girons, 1959 in CEMAGREF, 1984).

O corço tem um modo de vida extremamente fraccionado, intercalando períodos de actividade deslocamentos, alimentação e comportamento territorial/social, com períodos de inactividade repouso, sono e ruminação. O ritmo nictemeral deste cervídeo apresenta em geral 6 a 12 fases de alimentação, seguidas de fases de ruminação, que representam 7 a 8 horas do ciclo diário. O tempo de sono tem uma duração total de 3 a 4 horas, repartidas por três períodos principais: dois durante o dia e um à noite (Boisaubert \& Boutin, 1988).

Em Portugal, o conhecimento da estratégia de ocupação do espaço pelo corço é ainda muito reduzido, existindo apenas alguns dados referentes às populações da Serra da Nogueira.

Como metodologia e no que diz respeito à abordagem dos vários aspectos que nos permitem conhecer algumas facetas da estratégia de ocupação do espaço e do tempo pelo corço, na área de estudo, a recolha de dados teve por base a realização dos seguintes tipos de observação:

- Directa - foram registados todos os animais observados durante a realização deste estudo e ainda observações feitas por residentes, quando a informação parecia ser fidedigna, e por funcionários do Parque. A cada observação fez-se corresponder um número, utilizado para a localização da mesma numa carta militar 1:25.000 e para tratamento informático. A ficha utilizada para registo encontra-se em anexo VIII-1.
- Indirecta - a ocorrência de vestígios da presença da espécie: pegadas, trilhos, dejectos (anexo II), camas, marcações e vegetação consumida, registada por nós ou por fontes fidedignas, foram também cartografados numa carta militar1:25.000.

Estas observações foram efectuadas através da realização de:

- Percursos - realizámos cerca de 80 percursos (de distâncias variáveis e à velocidade média de 1 km / h) com duração entre 1 a 8 horas (em média 3), durante o dia. Os percursos localizaram-se, principalmente, na parte central do Parque (tendo sido significativa a área por nós prospectada), embora também se tenham efectuados percursos noutras áreas. Entre estas encontram-se o primeiro planalto da Serra da Peneda (de Norte para Sul) e carvalhais envolventes, Mata do Ramiscal, Mata do Cabril, margem direita do Rio Fafião entre Porto da Lage e Pigarreira e esquerda junto à aldeia de Fafião, Lagoa do Marinho, Vale do Rio Mau e zona entre os Cotos da Fonte Fria e a aldeia de Pitões das Júnias. A realização destes percursos teve por base dois processos: um não sistemático e outro sistemático. Em relação a este último e para dar continuidade ao já referido estudo protagonizado por técnicos do I.C.N., procurámos percorrer com a periodicidade necessária (pelo menos uma vez por mês) os trilhos de Calvos, de Palheiros e do Curral Velho (os dois últimos localizados nas Matas de Albergaria/Palheiros e o primeiro a Norte destas - anexo I-2), de forma a podermos estabelecer comparações no espaço e no tempo sobre o comportamento do corço. Estes percursos foram cartografados, à semelhança do que já foi referido, e a ficha de campo utilizada para registo encontra-se em anexo (VIII-3).
- Observações em pontos fixos - sempre que as condições meteorológicas o permitiram, efectuámos observações durante as duas/três primeiras horas da manhã (em média três dias por mês), nos meses de Março, Abril, Maio, Junho e Agosto. Utilizámos rotativamente seis locais fixos, ao longo do trilho de Calvos, estrategicamente escolhidos em anos anteriores por técnicos do I.C.N., por forma a permitirem aos observadores (em média 3) um bom campo de visão (Léonard, et al., 1991).

Por nos parecer mais apropriado abordaremos esta estratégia em quatro sub-capítulos: ritmo de actividade, hábitos alimentares, abrigo e reprodução/territorialidade.

5.1 Ritmo de actividade

\% Introdução

O corço é referido como um animal com um ritmo de actividade polifásico, utilizando períodos idênticos em fases de actividade e em fases de repouso, durante um período de 24 horas (Mauget \& Sempéré, 1978). Verificam-se, contudo, algumas variações em função das estações. No Inverno, as sequências de repouso são mais longas do que no Verão e representam 57% do ciclo diário. A fase de actividade aumenta de seguida na Primavera (até 56% em Maio), para se estabilizar no Verão e Outono e diminuír no princípio do Inverno. Na Primavera, a actividade diurna aumenta de forma considerável com o crescimento da duração quotidiana do período de luz. Esta utilização do tempo pelo corço é evidentemente mais complexa, dependendo de vários parâmetros inerentes ao animal idade, fase do ciclo reprodutor, entre outros, além de factores de perturbação existentes (Cederlund, 1981 in Chappius, 1985; Boisaubert \& Boutin, 1988).

\% Metodologia

Numa tentativa de detectar algumas características do ritmo nictemeral e anual do corço na área em estudo, analisámos estatisticamente alguns dados relativos aos animais observados. A influência de alguns factores meteorológicos na actividade dos animais foi ainda alvo de atenção.

\% Resultados e discussão

Embora não tenha sido possível recolher a informação relativa à hora a que muitos animais foram observados, os resultados obtidos (para uma amostra de 135 dados) são apresentados num gráfico em anexo (III-1). Verificámos que a maior parte das observações se registou entre as 8 e as 11 horas, registando-se o segundo período com maior representatividade registou-se entre as 12 e as 18 horas.

Bubenick (1969, in Boisaubert \& Boutin, 1988) refere que os dois períodos de actividade mais importantes são principalmente o amanhecer e o entardecer. Os resultados por nós obtidos não estão explicitamente de acordo com estas referências, sobretudo em relação ao fim do dia. Contudo é importante considerar que as horas a que se registaram as observações estão, essencialmente dependentes do horário de trabalho das pessoas que as efectuaram e que sofreram alterações ao longo do ano devido à diferença existente entre a hora de Verão e a de Inverno.

As épocas do ano em que se observaram mais animais foram o Inverno e a Primavera (anexo III1). Contudo, as diferenças de ritmo no trabalho de campo e nas actividades dos restantes observadores não nos permitem indicar os períodos de maior e menor actividade do corços.

Em relação às condições atmosféricas em que se efectuaram as observações, verificámos que foram muito diversas, embora tenham prevalecido ao longo do ano a ausência de vento e de pluviosidade e a temperatura amena.

Staines (1974) defende que as condições atmosféricas afectam a dispersão e os movimentos de Capreolus capreolus. O vento, por exemplo, ao destruir a camada térmica envolvente provoca uma perda de calor pelo animal (Blaxter et al, 1963 in Staines, 1974), o qual é estimulado a permanecer sob o coberto.

O pequeno número de registos de observações efectuadas em condições de chuva é explicado por Robertson (1967 in Staines, 1974), que verificou que o corço altera o seu comportamento alimentar na presença de chuva, alimentando-se sob coberto. Esta tendência é crescente em períodos de chuvas fortes ou quando são prolongados.

Algumas das observações efectuadas ocorreram logo após um período de chuva, facto que Prior (1987) explica como necessidade de os animais saírem dos abrigos para secarem o pêlo.

\% Conclusões

Embora os dados de que dispomos não nos permitam apresentar conclusões exaustivas, registámos o período de maior actividade dos animais no princípio da manhã. Em relação à época do ano, registámos uma maior actividade no Inverno e na Primavera, salvaguardando o facto do esforço de observação não ter sido uniforme ao longo do ano.

Como sugerido por vários autores, o vento, a pluviosidade e a temperatura parecem influenciar a actividade dos animais.

5.2 Hábitos alimentares

\% Introdução

A principal finalidade do estudo dos hábitos alimentares de uma dada espécie baseia-se em saber como, quando e onde os animais, em condições naturais, obtêm o seu alimento (Korschgen, 1980 in Martinho, 1990).

A qualidade e quantidade dos alimentos disponíveis afectam os animais de uma população não só em aspectos biométricos mas também em aspectos relacionados com a dinâmica desta (taxas de mortalidade, potencial reprodutivo, crescimento, entre outros) (Klein \& Strandgaard, 1972)

O corço, como todos os seres vivos, necessita de absorver uma certa quantidade de alimentos energéticos e azotados, para assegurar as suas funções vitais. Exprimindo as necessidades energéticas em UF (unidades forrageiras) Boisaubert \& Boutin (1988) indicam que para um corço com peso médio de 20 a 25 kg , estas são em média de $0,27 \mathrm{UF} /$ dia, o que corresponde à absorção de 3 a 4 kg de matéria verde por dia. Ainda segundo os mesmos autores as necessidades em matéria azotada variam entre 25 a $40 \mathrm{~g} /$ dia.

Para além de elementos energéticos e azotados, o corço integra com igual importância no seu regime alimentar elementos minerais como o fósforo, o cálcio, o ferro e o magnésio, pelo importante papel que estes representam em algumas fases do seu ciclo anual, nomeadamente nos períodos de
formação das hastes e ossificação das crias e sua aleitação (Swift, 1948; Boisaubert \& Boutin, 1988).

As necessidades em água são dificeis de definir, contudo parece que os corços satisfazem as suas necessidades em água essencialmente a partir dos alimentos que consomem (Prior, 1987).

Pretendemos neste ponto caracterizar o regime alimentar do corço ao longo do ano.

\% Metodologia

O estudo do regime alimentar de Capreolus capreolus pode seguir diferentes métodos: pela observação directa dos animais (Klotzei, 1965 in Pereira \& Moço, 1977), pelo exame da vegetação análise descritiva das espécies que aparecem consumidas (Aldous, 1944), pela análise de conteúdos estomacais (Siuda et al., 1969) ou pela análise do material fecal (Maizeret et al., 1986; Birkenstock \& Maillard, 1989).

Segundo Daburon (1968 in Pereira \& Moço, 1977) e Thomson (1966 in Pereira \& Moço, 1977) é possível, em certas circunstâncias, examinar espécies vegetais ou locais seleccionados por um animal, para determinar a importância relativa das várias espécies na sua dieta alimentar, tendo por base a evidência da frequência de utilização. Aldous (1944) designa este método como método de levantamento dos rebentos comidos.

Neste trabalho foi seguida a estratégia do registo de espécies que mostraram ter sido consumidas pelo corço, encontradas por acaso ou no seguimento de trilhos de corço. Para obtenção de dados direccionámos a procura para especímens que se encontravam ao alcance do cervídeo. Existindo na área em estudo diversas espécies de herbívoros, esta metodologia foi aplicável pelo facto de o corço exibir um comportamento característico, de entre o qual se destaca a descontinuidade entre especímens consumidos num mesmo local, a forma serrilhada e em meia lua com que arranca apenas a parte terminal das folhas (anexo II) e o aspecto desfiado de caules de espécies lenhificadas, devido à acção dos molares e ausência de incisivos superiores, por oposição ao aspecto dos cortes oblíquos e lisos produzidos pelos roedores e lagomorfos, devido à utilização exclusiva dos incisivos.

\% Resultados e discussão

Os dados que se apresentam neste trabalho dizem essencialmente respeito à vegetação existente na área das Matas de Albergaria/Palheiros. O quadro I apresenta todas as espécies, géneros ou grupos vegetais que registámos como constituintes da dieta alimentar do corço em cada estação do ano:

Período de Outono		Período de Inverno	
Prunus lusitanicus	Rubus spp.	Betula spp.	Rubus spp.
Pyrus spp.	Cytisus spp.	Quercus suber	Chamaespartium tridentatum
Ilex aquifolium	Hedera helix	Pyrus sp.	Cytisus spp.
Frangula alnus	Vaccinium myrtillus	Ilex aquifolium	Hedera helix
Arbutus unedo		Frangula alnus	Erica spp.
		Arbutus unedo	Calluna vulgaris

Período de Primavera	Período de Verão
Salix spp. Rubus spp. Castanea sativa Crataegus monogyna Quercus pyrenaica Cytisus spp. Quercus robur Halimium alyssoides Quercus rubra Vaccinium myrtillus Quercus suber Rubia peregrina Prunus avium Ruscus aculeatus Prunus lusitanicus Pyrus sp. Acacia melanoxylon Herbáceas Acer pseudoplatanus Ilex aquifolium Frangula alnus Arbutus unedo Olea europaea	Salix spp. Rubus spp. Castanea sativa Crataegus monogyna Prunus lusitanicus Cytisus spp. Pyrus sp. Ruscus aculeatus Acacia melanoxylon Ilex aquifolium Frangula alnus Arbutus unedo

Quadro I: Plantas consumidas pelo corço.
Tendo em conta que aquilo que o cervídeo come apenas indica preferências entre as espécies presentes na zona que este ocupa (Staines, 1974), vamos procurar caracterizar a alimentação do corço nas várias estações do ano.

Período de Outono (dados recolhidos entre 3 de Outubro e 14 de Dezembro):
As espécies arbustivas mostraram constituir a base alimentar do corço neste período. De entre estas destacam-se as silvas (Rubus spp.) pela maior frequência de observação de folhas, rebentos e, provavelmente, frutos consumidos, seguidas do medronheiro (Arbutus unedo). Ao nível arbóreo teve maior expressão o consumo de rebentos de azevinho (Ilex aquifolium).

Estes resultados são concordantes com os obtidos num estudo efectuado por Siuda et al. (1969) na Polónia, no qual foram analisados os conteúdos estomacais de 46 animais. Estes autores constataram que, para este período, o estrato arbóreo representava apenas 20% do conteúdo das panças, e que as espécies arbustivas constituíam a base alimentar da espécie em estudo, destacandose Calluna vulgaris, Rubus idaeus e Vaccinium myrtillus. A fraca frequência de registo de Vaccinium myrtillus (uva-do-monte) nos resultados por nós apresentados estão relacionados com a dificuldade de detectar a predação do corço nesta espécie, resultante do método por nós escolhido.

Maizeret et al. (1986), em França, verificou que os fungos constituem 17,6\% do alimento do corço no Outono. Também Boisaubert \& Boutin (1988) constataram que o consumo de cogumelos (identificados sempre como comestíveis) aumenta no Outono e no Inverno. Face à ocorrência considerável de cogumelos em alguns locais da área de estudo, procurámos, sem sucesso, perceber se os corços os consumiam.

Período de Inverno (dados recolhidos entre 11 de Janeiro e 21 de Março):
Ao longo deste período foram notadas alterações nas espécies preferencialmente consumidas pelo corço, aparentemente como resposta a novos estados de desenvolvimento exibidos pela vegetação em geral. Desde o ínicio da estação até finais de Fevereiro, as silvas e o medronheiro foram as
espécies consumidas registadas com maior frequência, seguidas do azevinho. No início de Março com o aparecimento de rebentos, as giestas (Cytisus spp.) e a carqueja (Chamaespartium tridentatum) passaram nitidamente a integrar o regime alimentar da espécie em estudo, de acordo com as nossas observações.

A ocorrência de um nevão no princípio de Fevereiro permitiu-nos seguir trilhos de vários animais, ao longo dos quais encontrámos arbustos de Arbutus unedo cujas folhas e ápices vegetativos tinham sido fortemente consumidos, o que constitui mais um indício da importância do medronheiro no período em questão.

Siuda et al. (1969) verificaram que, durante o período de Inverno, a utilização de espécies arbóreas de folha caduca ocorre em reduzidas quantidades, ao contrário do que acontece com Pinus sylvestris (pinheiro silvestre), cuja média de ocorrência é de 30% do volume total da pança. Embora tenhamos percorrido povoamentos de resinosas, nomeadamente de Pinus sylvestris, com o intuito de observar ramos consumidos, não conseguimos registar qualquer indício da integração desta espécie no regime alimentar do corço. O facto de, na área em estudo, os povoamentos desta resinosa serem na sua maioria adultos, reduz consideravelmente a oferta alimentar que poderiam apresentar.

Tal como foi por nós constatado e de acordo com Siuda et al. (1969), os arbustos continuam a representar uma parte importante da alimentação do corço neste período do ano. Estes autores referem que esta importância advém não só pelo consumo de folhas mas também de sementes secas.

As herbáceas e as gramíneas são indicadas como pouco representativas do regime alimentar no período em estudo. Fetos e fragmentos de fungos ocorrem esporadicamente nos conteúdos estomacais analisados (Siuda et al., 1969).

Período da Primavera (dados recolhidos entre 22 de Março e 21 de Junho):
No período de Primavera encontrámos uma maior diversidade de espécies vegetais consumidas pelo corço. Este facto, parece-nos ser compreensível, uma vez que é durante este período que ocorre o principal desenvolvimento vegetativo das espécies, aumentando a apetência do corço para estas. Por outro lado, foi realizado um maior esforço de colheita de dados, constituindo a única estação em que houve recolha de dados ao longo de todos os meses e em que foram percorridos locais pela primeira vez (e nalguns casos, única).

Das espécies listadas salienta-se, pela frequência de observações, Rubus spp. (silvas), Pyrus sp. (pereira brava) e Cytisus spp. (giestas), seguidas de Frangula alnus (zangarinho) e Salix spp. (salgueiro). Espécies como Olea europaea var. europaea (oliveira), Acacia melanoxylon (acácia), Prunus avium (cerejeira brava) e Castanea sativa (castanheiro) constituem registos ocasionais.

Verifica-se assim uma maior importância das espécies arbóreas na dieta alimentar do corço, tal como registaram Siuda et al. (1969). Segundo estes autores, folhas e rebentos de árvores representam 38% do conteúdo das panças analisadas.

Registámos ainda uma subida no consumo de herbáceas, resultados mais uma vez apoiados pelos valores encontrados (40%) pelos autores acima citados, fenómeno compreensível uma vez que as espécies do estrato herbáceo crescem de forma luxuriante e um pouco por todo o lado.

Embora não verificado por nós, as gramíneas continuam a representar, neste período, uma pequena percentagem da dieta alimentar (Siuda et al., 1969).

Período de Verão (dados recolhidos entre 1 de Julho e 8 de Setembro):
Neste período registámos uma menor ocorrência de espécies arbóreas na alimentação do corço em relação ao período anterior. O género arbustivo mais consumido, de acordo com as nossas observações, continuou a ser Rubus. Siuda et al.(1969) também registaram uma descida na percentagem total de material arbóreo na alimentação do corço neste período. Rubus é também o género que ocorre em maiores quantidades, embora nas panças de animais mortos em Setembro predomine Calluna vulgaris. A quantidade de herbáceas diminuí e a percentagem de gramíneas aumenta, embora continue a representar uma pequena parte do volume do rúmen analisado.

Pereira \& Moço (1977) notaram uma utilização considerável de cogumelos, especialmente do género Lepiota, no Verão.

Face a tão grande variedade, no espaço e no tempo, de alimentos consumidos, Maizeret (1983 in Boisaubert \& Boutin, 1988) constatou que os corços não se alimentam de todas as espécies vegetais que têm à sua disposição, mas que efectuam uma escolha em qualidade e quantidade, fenómeno que identificou como selectividade alimentar. Esta noção provém da atracção que a espécie vegetal representa para o animal, ou seja, do seu grau de apetência, o qual está directamente relacionado com características tais como teor em fibras, matéria azotada e sais minerais. O mesmo autor propõe que a selectividade é essencialmente individual e que pode variar em função do sexo, da idade e inclusivé do estado fisiológico do animal.

Swift (1948) menciona a capacidade dos cervídeos em seleccionar os alimentos mais nutritivos embora segundo Shafer (1965 in Pereira \& Moço, 1977) isto não implique que estes sejam os mais apetecíveis.

Segundo Maillard \& Picard (1987) parece não existirem relações directas entre a abundância ou frequência de uma espécie e o seu grau de utilização pelos animais. Martinho (1990) verificou que, na maioria dos casos, as espécies menos abundantes são as mais utilizadas.

Siuda et al.(1969) verificaram que os conteúdos das panças eram dominados por uma a três espécies, tendo interpretado este facto como consequência do corço demostrar distintas preferências por algumas espécies nas diferentes estações do ano. Também Aldous (1944), num estudo no Minnesota, constatou a preferência por uma única espécie, o que refere como não sendo favorável, pois a dieta deve ser diversificada. Picard et al. (1986 in Birkenstock \& Maillard, 1989) encontraram resultados semelhantes.

Tal como constatado por Pereira \& Moço (1977), o predomínio da ocorrência de espécies arbustivas sobre as herbáceas é explicado por vários autores (Boisaubert \& Boutin, 1988; Prior, 1987) pela necessidade da presença de fibras indispensáveis a uma boa digestão dos alimentos, uma vez que estas estimulam a actividade da parede da pança. Os valores encontrados por aqueles autores traduzem bem esta preferência: embora tivessem sido inventariadas 83 espécies herbáceas e 8 arbustivas, as percentagens de utilização destes estratos na alimentação do corço foram de $22,8 \mathrm{e}$ 62,5 , respectivamente.

As silvas mostraram constituír a espécie de base do regime do corço ao longo de todo o ano, de acordo com Pereira \& Moço (1977), Boisaubert \& Boutin (1988) e Birkenstock \& Maillard (1989).

Martinho (1990) indica Cytisus como o género mais utilizado pelo corço, Crataegus monogyna como a espécie mais apetecível e Rubus como um dos preferidos. Os resultados deste trabalho apenas são concordantes com a última referência.

Hedera helix, referida por Boisaubert \& Boutin (1988), Picard et al. (s/ data) e Birkenstock \& Maillard (1989) como uma das espécies básicas da dieta alimentar do corço em florestas calcícolas, foi registada por nós apenas nos períodos de Outono e de Inverno. Para além de Maizeret et al. (1986) e Birkenstock \& Maillard (1989) terem registado (à semelhança dos nossos resultados) o consumo de hera principalmente no Inverno, não deixamos de considerar possíveis falhas de amostragem, uma vez que Maillard \& Picard (1987) constataram que a hera é consideravelmente subestimada quando aplicado o método de observação da vegetação consumida.

Ao nível das herbáceas, Pereira \& Moço (1977) e Boisaubert \& Boutin (1988) indicam o morangueiro silvestre (Fragaria vesca) como uma das espécies mais importantes. Embora esta espécie esteja presente em locais da área de estudo, a fraca ocorrência com que a observámos, provavelmente devido às suas dimensões, não nos permitiu detectar que o corço a consumia. Ao nível arbóreo também não conseguimos registar a preferência por Quercus spp. referida por vários autores (Maizeret et al., 1986; Birkenstock \& Maillard, 1989; Martinho,1990), embora se pense que desempenhe um papel importante o consumo de frutos no Outono.

Embora não tenhamos conseguido perceber a importância dos frutos na alimentação do corço como apresentado por Pereira \& Moço (1977), não queremos deixar de referir que estes autores verificaram que o mesmo apresenta preferência por frutos variados: cerejas, morangos, amoras na Primavera e no Verão e castanhas e bolota no Outono e Inverno. Contudo a presença de corço em áreas de carvalhal leva a crer que exista consumo de bolota, essencialmente no Outono. Para França e também para o Outono, Varin (1979) refere mesmo a preferência do corço por bolotas em relação a castanhas e frutos de faia, indicando ainda a busca de plantas produtoras de frutos e bagas tais como o pilriteiro, a uva do monte, a cerejeira brava, entre outras.

Apesar da forma de alimentação dos garranos ser bastante diferente da manifestada pelo corço, nomeadamente por o primeiro exercer um consumo quase sempre exaustivo dos especímens seleccionados, surgiram situações de dúvida em locais habitualmente frequentados pelas duas espécies. Sempre que notada a ocorrência de garranos, nomeadamente por excrementos, não registámos a vegetação consumida observada.

\% Conclusões

O regime alimentar do corço caracteriza-se por ser extremamente variado e dependente, não só das espécies vegetais presentes no habitat, mas também de uma selecção individual (Maizeret, 1983 in Boisaubert \& Boutin, 1988).

Os resultados obtidos permitem constatar que o corço se alimenta de espécies arbóreas, arbustivas e herbáceas, variando as percentagens relativas da sua utilização com a estação do ano.

Na área de amostragem, já referida, verificámos que das espécies arbóreas se destaca o consumo de azevinho, de zangarinho e de pereira brava ao longo de todo o ano, embora com maior representatividade no período primaveril.

Ao nível das arbustivo, Rubus demonstrou ser o género consumido com mais frequência ao longo de todo o ano, seguido de Arbutus e Cytisus .

Ao nível herbáceo a Primavera parece ser o único período do ano em que ocorre um consumo significativo de plantas deste estrato.

Em condições de plena disponibilidade, as espécies vegetais que evidenciam melhor qualidade alimentar deverão ser as mais preferidas (Martinho, 1990). Uma vez que as espécies que mostraram ser preferidas existem em abundância, pensamos que o corço dispõe de uma boa fonte alimentar na área estudada.

5.3 Abrigo

\%io Introdução

Uma das particularidades mais interessantes do comportamento do corço é, segundo Pereira \& Moço (1977), a forma como, consoante as circunstâncias, este se socorre da vegetação para abrigo. Em relação a este é de referir que no caso do corço se torna necessário distinguir duas situações: o abrigo propriamente dito, associado a condições climáticas, e o refúgio, associado a perigo iminente. Em cada uma destas situações são utilizadas pelo corço parcelas distintas do seu domínio vital (por exemplo, vales arborizados para abrigo e matos altos para refúgio) essencialmente dependentes das características do habitat.

No que respeita ao abrigo, as áreas de repouso são relativamente fáceis de detectar pela presença de camas (anexo II). Estas consistem em pequenos espaços ovais, geralmente de solo a descoberto, com uma área aproximada de $50 \times 60 \mathrm{~cm}^{2}$ e resultam do comportamento específico do corço em esgaravatar cuidadosamente com as patas anteriores o local antes de se deitar (Hulotte, 1991).

Pretendemos neste ponto caracterizar a forma como o corço utiliza o habitat para se abrigar e refugiar.

Metodologia

A recolha de dados para abordar este assunto teve por a metodologia referida no início deste capítulo.

\% Resultados e discussão

Registámos a ocorrência de camas numa grande variedade de biótopos (carvalhal, faial, pinhal, acacial, bosques de folhosas diversas, entre outros), embora sempre sob coberto arbóreo e na presença de um estrato arbustivo pouco denso, o qual nos pareceu, em grande parte das situações, ser suficiente para ocultar um animal deitado, não o impedindo porém, de observar o meio que o rodeia. Estes resultados são concordantes com os apresentados por Pereira \& Moço (1977).

Em zonas em que a manta morta se apresentava descontínua, a presença de pêlos e/ou dejectos permitiu-nos em algumas situações, confirmar que estávamos perante camas de corço (Maublanc, 1989) . A ocorrência de dejectos nas camas é explicada por Mitchell et al. (1977 in Welch et al., 1990) pela tendência manifestada pelos animais em defecarem alguns minutos após se levantarem, depois de um período de descanso.

Com uma frequência consideravelmente menor, observámos algumas camas não esgaravatadas sobre manta morta e estrato herbáceo. Inicialmente pensámos existir alguma variação do aspecto das
camas em função das condições atmosféricas (camas não esgaravatadas tornar-se-iam mais quentes no período mais frio e camas esgaravatadas tornar-se-iam mais frescas, pelo contacto com a terra, no período mais quente) contudo não nos foi possível estabelecer qualquer relação.

Os locais de repouso encontrados apresentavam, de um modo geral, duas a três camas afastadas entre si por 1 a 3 m . O facto de nos termos apercebido, em muitos casos, de uma ocupação das camas diferenciada no tempo, sugere uma preferência do local em questão por um mesmo animal (Hulotte, 1991). Num único caso verificou-se a ocorrência de um grupo de 18 camas, entre as quais algumas mostravam ser igualmente recentes, fazendo-nos pensar que aquele local terá sido ocupado por vários animais, em simultâneo. A forma como estas se dispunham pressupõe uma estratégia de assegurar uma maior vigilância, como proposto por Pereira \& Moço (1977).

No que diz respeito a uma diferenciação na utilização dos biótopos para locais de repouso, as observações por nós efectuadas não nos permitem manifestar sobre os resultados obtidos pelos autores anteriormente referidos: os povoamentos de resinosas com sub-bosque são utilizados como abrigo, sobretudo no Outono e Inverno, uma vez que durante estas estações do ano, os animais se sentem menos protegidos nos povoamentos de espécies de folha caduca.

Em relação ao refúgio e de acordo com o comportamento dos animais observados, verificámos que, em situações de perigo, estes se refugiavam em locais diversos, em função do que se encontrava mais próximo. Assim, foram observados animais a utilizarem como refúgio penedos, matos altos e povoamentos adultos, especialmente em zonas com estrato arbustivo. Pereira \& Moço (1977) referem os matos como zonas de refúgio imediato, por excelência.

Num estudo na Escócia, Jeppesen (1987) verificou que há muitos e importantes factores que afectam o comportamento de fuga e o tipo de coberto utilizado para refúgio. A posição do animal em relação à perturbação, o tipo de perturbação e as possibilidades de refúgio entre o seu domínio vital parecem ser os aspectos com maior influência na direcção de fuga.

$\%$ Conclusões

O corço parece exibir uma diferenciação na utilização dos biótopos presentes no seu domínio vital em situações de abrigo (essencialmente coberto arbóreo) e de refúgio (sobretudo matos altos e penedos). A ocorrência de camas registou-se sempre sob coberto arbóreo e na presença de estrato arbustivo. Não detectámos diferenças na localização destas em diferentes biótopos em função do ano.

5.4 Reprodução/Territorialidade

\% Introdução

O conhecimento das várias fases que integram o ciclo reprodutor de uma espécie e o modo como ocorrem no espaço e no tempo, são essenciais para a compreensão dos diferentes aspectos a ele associados - territorialidade, densidade populacional, relação macho-fềmea, entre outros - bem como do modo como estes interactuam (Pereira \& Moço, 1977).

O corço apresenta um ciclo reprodutor com fases distintas que se sucedem ao longo do ano, a cujos processos internos estão, por vezes, associadas manifestações exteriores detectáveis num estudo de ecologia.

As principais fases do ciclo reprodutor de Capreolus capreolus são o cio, a gestação e o período de nascimentos. A característica essencial da reprodução deste cervídeo relaciona-se com o modo como ocorre a gestação. Após a fecundação, que ocorre em Agosto, o ovo desenvolve-se só até ao estado de blastócito, entrando numa fase de diapausa ou desenvolvimento interrompido durante os cinco ou seis meses seguintes. A implantação do embrião na parede do útero ocorre em DezembroJaneiro, reiniciando-se assim o seu desenvolvimento. Este processo é designado por ovoimplantação retardada e interpretado por vários autores como uma estratégia específica que permite o nascimento das crias na altura do ano mais favorável para o seu desenvolvimento (Maio-Junho) (Chaplin, 1977; Putman, 1988).

Os machos e as fềmeas estão aptos a reproduzirem-se após o primeiro ano de vida, embora por várias razões só participem no processo reprodutivo após o segundo ano (Putman, 1988). Normalmente, no primeiro parto as fêmeas têm apenas uma cria e duas nos seguintes. A razão dos sexos à nascença é normalmente de 1:1 (Klein \& Strandgaard, 1972), dependendo contudo da idade e condição física da progenitora aquando da fecundação (Ellenberg, 1968 in CEMAGREF, 1984). Chaplin (1977) constatou que não há uma variação característica da fertilidade com a idade em Capreolus capreolus.

Pela observação da figura 4 pode-se constatar a diversidade de processos que integram o ciclo reprodutor do corço. De um modo global e para o macho, este ciclo caracteriza-se pelo aparecimento das hastes em Dezembro, revestidas por veludo (tecido muito vascularizado com funções importantes no desenvolvimento das hastes) cuja queda ocorre em Março-Abril. E nesta altura que aparecem as primeiras marcações na vegetação, expressão máxima do comportamento territorial do corço que se estende até Setembro. Em Julho-Agosto os animais encontram-se no cio e em Outubro-Novembro tem lugar a queda das hastes, completando-se um ciclo anual.

Figura 4: Ciclo reprodutor do corço (adaptado de Pereira \& Moço, 1977)
O território é geralmente definido como uma parte do domínio vital no qual o(s) residente(s) se opõe, por certos comportamentos ou sinais, à intrusão de outros indivíduos da mesma espécie.

Pretendemos, neste âmbito, reconhecer e posicionar no tempo as diferentes fases que integram o ciclo reprodutor de Capreolus capreolus, caracterizar os diversos comportamento observados e delimitar áreas preferencialmente marcadas
\% Metodologia
O esforço de recolha de dados para a referida abordagem incidiu sobre a ocorrência de marcações, uma vez que estas são, pelo seu aspecto, facilmente detectadas. Sempre que observadas, registámos a espécie (ou género) em que ocorriam, bem como a abundância relativa desta na área prospectada.

O acompanhamento da evolução do comportamento do corço, nomeadamente pelo aparecimento de marcações ao longo do período em que decorreu o presente estudo, fez-se sobretudo nos trilhos já referidos (Calvos, Palheiros e Curral Velho).

Entre 1987 e 1990, as marcações localizadas ao longo destes trilhos foram alvo de uma atenção mais cuidada, no âmbito do já referido estudo protagonizado por técnicos do I.C.N.. Aplicando o método utilizado no citado estudo, fizemos corresponder a cada especímen marcado em 1994 um número, que foi utilizado para identificar a marcação no local e num mapa da área (à escala 1:10.000). Para cada marcação foram registados quatro parâmetros: distâncias mínima e máxima ao solo, comprimento e perímetro do caule (medido num ponto médio). Para a determinação destes valores utilizámos uma fita métrica com $0,1 \mathrm{~cm}$ de precisão. Foram ainda registados outros dados como a posição relativa de um conjunto de especímens marcados e a reacção destes à marcação, a proximidade a trilhos, camas, dejectos ou vegetação consumida e ainda se era notada a ocorrência de marcações actuais sobre marcações antigas. A ficha de recolha de dados encontra-se em anexo (VIII-5).

Para identificar cada marcação in loco foi utilizada uma fita de plástico. Por se ter verificado a pouca resistência dos números registados com marcador, este ano foi colocada uma placa com o respectivo número gravado. A visualização da posição relativa de especímens marcados em diferentes anos foi facilitada pelo uso de fitas de cores diversas. Assim a cor verde assinala marcações de 1987, a laranja de 1988, a amarela de 1989, a azul de 1990 e finalmente a vermelha de 1994.

Por forma a ser possível comparar a localização de especímens marcados este ano com a dos marcados em anos anteriores, uma vez que a localização destes na carta nunca é tão precisa como seria desejável, procurámos identificá-los com base nos dados disponíveis, processo que se revelou bastante moroso.

É de referir que este ano, as medições e colocação de fitas só se efectuaram para marcações registadas até meados de Junho.

Os valores registados este ano e em anos anteriores foram objecto de um tratamento estatístico (anexo IV).

\%\% Resultados e discussão

Embora não tenhamos registado observações que nos permitam definir o início e o fim das várias fases que integram o ciclo reprodutor da espécie na área em estudo, é no entanto possível referenciar no tempo a ocorrência de algumas fases.

O facto de a partir do mês de Outubro só se ter registado a observação (a 6 de Novembro) de um macho adulto com hastes (seis pontas) e de ter sido encontrada (a 17 do mesmo mês) uma haste pertencente a um macho também adulto (três pontas), que evidenciava ter caído pouco tempo antes, faz-nos pensar que a queda das hastes ocorre durante os meses de Outubro e Novembro, como referido por Pereira \& Moço (1977).

Sabendo que os corços adultos são os primeiros a perder as hastes comparativamente com os animais mais jovens, poderíamos pensar que o processo de queda das hastes teria início no princípio do mês de Novembro (Strandgaard, 1972). Contudo, ainda segundo o referido autor, a relação estabelecida não é linear, uma vez que a velocidade de desenvolvimento é também função de outros parâmetros já referidos.

Em relação ao período em que ocorre a queda do veludo, possuímos apenas uma observação fidedigna: o macho que foi encontrado morto a 30 de Abril, como já referido (e cujo estado de preservação demonstrava ter morrido há cerca de 48 horas), que apresentava uma haste completamente revestida por veludo e a outra com pequenas zonas a descoberto. É provável que se estivesse a iniciar o processo de queda do veludo.

É de referir ainda que registámos a primeira marcação a 3 de Março, o que poderá resultar do esforço de um macho adulto em se libertar do veludo, tal como é sugerido por Cumming (1974). Segundo este e Pereira \& Moço (1977) a remoção do veludo é um processo relativamente rápido, durando em geral uma semana.

Em meados do mês de Março, constatámos o aparecimento de um número considerável de marcações, o que pressupomos como o início da actividade territorial. A observação de terra esgaravatada junto ao tronco de alguns especímens marcados (anexo II), para além da sua abundância, constitui uma prova de estes terem sido utilizados para delimitação do território e não, como na fase anterior, para expulsão do veludo.

O aparecimento das marcações teve maior expressão entre meados do mês de Abril e meados do mês de Julho, embora tenhamos registado novas marcações nos primeiros dias de Agosto. O aparecimento de novas marcações nesta altura é também referido por Cumming (1974). Maublanc (1989), com base num estudo efectuado em França, no Maciço de Caroux-Espinouse, constatou que o período de maior territorialidade ocorre entre Maio e Julho.

Segundo Jeppesen (1987), na época de cio os machos emitem vocalizações com maior frequência. Embora tivéssemos ouvido vários animais não foi notado qualquer acréscimo na sua frequência. Em relação às fềmeas não foi ouvido o som característico produzido nesta época do ano, como já referido. A forte presença humana que se faz sentir, nesta altura do ano, na zona mais prospectada por nós, poderá ser uma explicação para os resultados obtidos.

Pereira \& Moço (1977) verificaram que a agressividade dos machos termina com a queda das hastes, completando-se um ciclo reprodutor.

Uma vez apresentados os dados obtidos relativamente ao ciclo reprodutor do corço, passamos agora a apresentar os resultados respeitantes à análise das marcações.

Com base em 336 marcações registadas, 168 entre 1987 e 1990 e 168 em 1994, elaborámos uma lista das espécies ou géneros (num total de 37) utilizadas pelo corço, da qual se denota uma grande variedade, encontrando-se presentes espécies arbóreas, arbustivas e herbáceas.

Pinaceae	Moraceae	Rhamnaceae
Pinus pinaster	Ficus carica	Frangula alnus
Pinus sylvestris		
Cupressaceae	Rosaceae	Cistaceae
Chamaecyparis lawsoniana	Malus sp.	Halimium alyssoides
	Prunus avium	
Taxaceae	Prunus lusitanicus	
Taxus baccata	Prunus persica	Ericaceae
	Pyrus spp.	Arbutus unedo
Salicaceae	Sorbus aucuparia	Erica spp.
Salix sp.		
Betulaceae	Leguminosae	Oleaceae
Betula spp.	Acacia dealbata	Fraxinus angustifolia
Corylus avellana	Acacia melanoxylon	Olea europaea var. europaea
	Chamaespartium tridentatum Cytisus spp.	
Fagaceae	Lygos sphaerocarpos	Caprifoliaceae
Castanea sativa	Ulex sp.	Lonicera sp.
Fagus sylvatica	Aceraceae	
Quercus pyrenaica	Acer pseudoplatanus	
Quercus robur	Acer pseudoplatanus	Liliaceae
Quercus rubra	Aquifoliaceae	Asphodelus lusitanicus
Quercus suber	Ilex aquifolium	Ruscus aculeatus

Quadro II - Lista de plantas marcadas pelo corço, por ordem taxonómica.

Os resultados obtidos pelo tratamento estatístico dos valores registados são apresentados em anexo (IV-8/11). A análise dos vários indicadores estatísticos utilizados revela uma grande variação nos valores encontrados para os parâmetros avaliados. Apontamos como causa para esta variação a inclinação do terreno, que se faz sentir em grande parte dos trilhos prospectados, repercutindo-se na posição relativa do animal face à planta marcada. E de referir que Turcek (1962 in Cumming, 1974) num estudo na Europa, encontrou para os mesmos parâmetros valores muito semelhantes.

A preferência por especímens a marcar está muito relacionada com a constituição do habitat, nomeadamente em relação ás espécies presentes e respectiva abundância.

Em relação aos dados obtidos nos trilhos seleccionados podemos constatar que as plantas largamente mais utilizadas foram giesta (27%), pinheiros (18%), zangarinho (15%) e pereira brava (14\%) (anexo IV-12). Para procurarmos perceber os factores de escolha dos especímens a marcar, procedemos ao levantamento das espécies mais abundantes nas zonas que exibiam maior número de marcações. Tendo em conta a localização das marcações, trilhos principais e secundários e as frequências relativas de ocorrência das espécies marcadas, verificámos que o corço utiliza várias estratégias na sua escolha. Deste modo, de entre um conjunto de plantas presentes ao longo de um trilho parecem-nos ter sido marcadas, na maioria dos casos, as que se destacavam pela sua posição estratégica, enquanto em clareiras ou zonas pouco arborizadas foram marcados os exemplares únicos de uma espécie. Estas estratégias são de tal forma evidentes que muitas vezes, ao prospectarmos uma área, detectávamos rapidamente a localização das marcações.

O registo de vários exemplares de Prunus lusitanicus muito próximos, marcados entre 24 de Março e 18 de Junho deste ano, e o facto de esta espécie ser, de um modo geral pouco utilizada pelo corço no PNPG, pressupõem que aquele conjunto tenha uma posição estratégica importante.

Com efeito, o facto de termos encontrado uma série de indivíduos marcados em diferentes anos (um deles em 1988, 1989, 1990 e 1994 - anexo II), leva-nos a supor que a escolha pode ter por base não só as características da planta mas sobretudo a sua posição estratégica, uma vez que é referido por vários autores que, de um modo geral, os corços mantêm os territórios de uns anos para os outros (Bramley, 1970 in Staines, 1974; Strandgaard, 1972).

Cumming (1974) defende que a seleç̧ão das espécies vegetais está relacionada com a resistência e flexibilidade do caule. Este dado poderá justificar o elevado valor encontrado para as giestas. Turcek (1962 in Cumming, 1974), registou que os corços exibiam preferência pelos pinheiros, tal como referido por Cumming (1974) na Escócia. A razão pela qual se verifica este comportamento não é óbvia mas, segundo o último autor, é provável que esteja relacionada com a ausência de ramos numa zona significativa do caule.

A análise do estado de sobrevivência de especímens marcados entre 1987 e 1990 e em 1994 (anexo IV-13) permitiu-nos verificar que, de entre as espécies marcadas mais vezes registadas, o medronheiro, os carvalhos (em especial o alvarinho), a pereira brava e o pinheiro bravo constituem o grupo de espécies mais resistentes, por oposição às giestas e ao pinheiro silvestre. Pensamos que a fase de crescimento em que a planta se encontra aquando da marcação é determinante para a sua reacção. Contudo, as características inerentes a cada espécie têm também influência, sendo notória a capacidade de regeneração manifestada pelo medronheiro, pelo carvalho alvarinho e pelas urzes.

No trilho de Calvos a localização das marcações foi condicionada, na sua maioria e como seria de esperar, aos dois bosquetes que ocorrem ao longo do trilho. Em relação a este não é possível estabelecer comparações com anos anteriores por falta de dados, embora possamos afirmar que foi notada uma maior densidade de marcações .

Por comparação da localização das marcações registadas, em cada ano, ao longo do trilho de Palheiros e do trilho do Curral Velho (anexo IV-14) é possível estabelecer uma evolução em algumas zonas.

No trilho de Palheiros (IV-15) os principais pontos de marcação têm-se mantido, intensificandose contudo em algumas zonas (A e C). Com base na localização de trilhos (pegadas e rastos) e observação de animais (nomeadamente em relação ao comportamento e direcção de fuga), interpretamos as diferentes zonas marcadas como:

A- provável confluência, no mínimo de 2 territórios (A 1 Curral de S . Miguel; A 2 Cabeço de Palheiros)
B- parte integrante de um território
C- confluência de 3 territórios (C 1 Casa de Palheiros; C 2 Ribeira das Gramelas; C 3 Cabeço de Palheiros)

Em relação ao trilho do Curral Velho (IV-15), registámos ligeiras alterações na parte da descida para Albergaria. Parece ter ocorrido uma deslocação dos animais para zonas de maior altitude, provavelmente como consequência do aparecimento de alimentação após o incêndio no Verão de 1989. É de referir o facto de os animais não só não terem abandonado a área após o incêndio, como revelarem uma maior ocupação desta. O facto de termos encontrado referências a observações de
animais a lamberem cinza do solo após uma queimada (Maizeret, 1984 in Boisaubert \& Boutin, 1988), poderá ajudar na compreensão do que é exposto. De forma semelhante à abordagem do trilho de Palheiros, interpretamos as diferentes zonas marcadas como:

De I- limite provável de território;
E e G- parte integrante de território;
F e H- provável confluência de 2 territórios (F 1 Curral Velho, F 2 Alto da Varziela; H 1 e H 2 Costa da Varziela);

A interpretação dos resultados obtidos não é linear, uma vez que encontrámos opiniões diferentes em relação ao significado das marcações. A maior parte dos autores defende que as marcações têm por principal função delimitar o território de um macho. Por outro lado, Cumming (1974) defende que as marcações surgem nos locais onde os animais passam mais tempo e que representam falsas lutas estimuladas pela presença de outros machos ou indícios desta. Kurt (1964 in Cumming, 1974) designou este comportamento por actividade redireccionada. A marcação odorífera de plantas em redor do território (sem que estas exibam qualquer sinal visível) não é excluída por Cumming (1974), embora o autor nunca tenha observado um animal a "patrulhar" esses limites. Por oposição, Vincent et al (1986) referem que os machos "patrulham" activamente a zona periférica ao seu domínio.

Segundo diversos autores, a existência de um número elevado de marcações pressupõe competição territorial. Deste modo, pensamos que as zonas com grande densidade de marcações podem corresponder a zonas limítrofes de dois territórios. Cumming (1974) constatou que o número de plantas marcadas não está relacionado com o número de árvores disponíveis, mas sim com o número de corços e com a dimensão da área.

Embora haja dificuldade em saber exactamente se as áreas marcadas correspondem a zonas onde os animais passam a maior parte do tempo (exemplo das zonas A e F, nas quais encontrámos diversas vezes camas e vegetação consumida, próximas de marcações), a zonas apenas pertencentes a territórios (exemplo das zonas B, E e G) ou a zonas limítrofes destes (exemplo das zonas D e I), pensamos estar perante, pelo menos, seis territórios no trilho de Palheiros e oito no trilho do Curral Velho. Strandgaard (1972) com base num estudo na Dinamarca, indica que a área do território pode variar de 13 a 41 ha, encontrando-se os valores médios entre 26 e 30 ha. Ainda segundo este autor, quanto mais rica e heterogénea for uma dada região, menor será a área de cada território verificando-se uma tendência para a sua manutenção de uns anos para os outros. Os dados por nós obtidos durante este trabalho, apontam para esta constatação.

\% Conclusões

De acordo com o que foi apresentado sobre as diferentes fases, pensamos que o ciclo reprodutor do corço no Parque Nacional da Peneda-Gerês coincide, na globalidade, com o ciclo apresentado por Pereira \& Moço (1977) para a população da Serra da Nogueira.

O estudo das marcações mostrou que o corço utiliza no Parque Nacional uma grande variedade de espécies vegetais, entre as quais se encontram herbáceas rígidas, arbustos e árvores, à semelhança dos resultados encontrados por Martinho (1990) para a Serra da Nogueira. Destas destacam-se Cytisus spp., Pinus spp., Frangula alnus e Pyrus spp.. Esta selecção parece estar relacionada com a localização, abundância e características físicas dos indivíduos marcados.

Apesar de termos registado uma variação considerável para os parâmetros amostrados, apresentamos os valores encontrados na medição de marcações:

	Distância mínima ao solo $(\mathbf{c m})$	Distância máxima ao solo $(\mathbf{c m})$	Compri mento $(\mathbf{c m})$	Diâmetro $(\mathbf{m m})$
Mínimo	4,0	7,5	6,0	4,8
Média	39,5	65,7	41,0	17,2
Máximo	90,0	101,0	95,0	132,1

A localização das marcações registadas de 1987 a 1990 e em 1994 permitiu constatar que os principais pontos de ocorrência destas se têm mantido ao longo dos trilhos de Palheiros e do Curral Velho. Os dados obtidos evidenciam, ainda, um provável incremento na densidade populacional para a área onde se inserem os três trilhos: Calvos, Palheiros e Curral Velho.

Uma grande capacidade de adaptação dos animais a zonas ardidas é inferida pelo registo de marcações, em locais registados em anos anteriores, um ano após a ocorrência de um incêndio. Passados cinco parece registar-se um incremento na densidade para a respectiva área.

A interpretação correcta da localização das marcações num território (como limite, parte integrante ou em zonas de confluência com outros territórios) e o conhecimento da área ocupada por vários territórios, só será possível num estudo com utilização de telemetria, sendo óbvia a importância da monitorização da área em estudo.

6. ESTRUTURA SOCIAL DA POPULAÇÃO

\% Introdução

Segundo Boisaubert \& Boutin (1988), a organização social constitui, de um modo geral, uma resposta da espécie ao ambiente. Exemplificativa desta afirmação é a tendência de agrupamento exibida por indivíduos de populações de corço que habitam zonas em que predomina a planície (Zejda \& Homolka, 1980; Cibien \& Aine, 1990) e a tendência solitária exibida por indivíduos de populações que habitam zonas predominantemente florestadas.

Por oposição ao comportamento manifestado por veados e gamos, o corço é conhecido por um forte carisma solitário e individualista quando em meio florestal. Contudo, a unidade básica de evolução, ao longo do ano, é formada por uma fêmea adulta e pelas crias desse ano, à qual pode estar associada um macho. Existem contudo outros tipos de associações possíveis (Casanova \& De Marinis, 1985), referidos mais adiante no texto.

Em Portugal, apenas Pereira \& Moço (1977) parecem ter abordado este assunto.
Apesar da dificuldade de abordar este tema num estudo desta envergadura, tentámos de qualquer forma obter alguma informação.

$\%$ Metodologia

Para analisar o comportamento exibido pelos animais observados, construímos uma matriz com o número da observação, data, hora, estação do ano, sexo, fase da vida - cria, jovem ou adulto (não se consideraram animais velhos por serem dificeis de identificar, encontrando-se englobados na classe dos adultos) e número total de indivíduos por grupo. Submetemos estes dados a uma análise estatística por forma a testarmos a existência de relações entre a dimensão do grupo e as estações do ano.

\% Resultados e discussão

A lista apresentada corresponde, na grande maioria, a animais observados durante o período em que decorreu o presente estudo e, ainda, a informações recolhidas no mesmo período, referentes a observações de 1993. Foram efectuadas 182 observações (animais isolados ou em grupo) perfazendo um total de 264 animais (com repetições), dos quais 81 machos, 112 fêmeas e 71 indeterminados. Em relação à idade foram observados 11 crias, 50 jovens, 118 adultos e 85 animais aos quais não foi possível associar a idade (anexo V-1/4).

Face ao elevado número de animais, cujo sexo e idade não foi possível identificar, não desenvolvemos uma estimativa da proporção entre os sexos e as idades, na população em estudo. Ao nível do sexo as dificuldades surgem normalmente durante o período em que os machos não apresentam hastes, enquanto ao nível da idade surgem confusões sobretudo a partir de Outubro, altura em que os jovens apresentam uma dimensão por vezes dificíl de distinguir da mãe.

Da análise da tabela II apresentada em anexo (V-5) verifica-se, como era de esperar, que a maior parte das observações correspondem a animais solitários ($70,9 \%$). Num estudo levado a cabo nos Montes Cantábricos, Costa \& Purroy (1991) verificaram que 90% dos grupos observados eram formados por 1 ou 2 indivíduos, contra $92,3 \%$ valor encontrado por nós. No PNPG os grupos formados por dois indivíduos, representam $73,6 \%$ dos grupos observados (53) e os formados por
três indivíduos representam apenas 17% destes. Num estudo realizado em Itália, Casanova \& De Marinis (1985) encontraram valores semelhantes: $65,4 \%$ para grupos formados por dois indivíduos e $22,7 \%$ para grupos formados por três. Ainda segundo estes autores, os gupos de indivíduos com número superior a 4 (o número máximo registado neste estudo foi de 7 indivíduos) devem ser considerados acidentais, como registado por nós ($2,7 \%$).

Em relação a variaçães na frequência com que são observados os grupos com diferentes dimensões ao longo do ano, verificamos que a maior parte das observações de animais isolados ocorreu durante a Primavera (anexo V-5), o que é explicado por CEMAGREF (1984), por ser nesta altura que se inicia a dissolução das unidades maternais, e ainda não se terem formado os casais que deverão assegurar a descendência do ano seguinte. Bideau et al. (1983), num estudo efectuado em França, com uso de telemetria, verificaram que depois de um período de estreita associação (Outono e Inverno), a união mãe-jovem desaparece em Maio, após um período transitório em Abril, no qual ocorrem separações temporárias. Na Noruega, Poutsma (1987) obteve resultados semelhantes.

A análise dos elementos que constituem os grupos de 2 indivíduos, no Inverno e na Primavera (períodos em que se registaram as maiores percentagens) mostrou que estes eram formados, na maioria, por um macho e uma fềmea, que nalguns casos parecem corresponder a mãe e jovem e noutros a casal. Em relação a este último, Vincent et al. (1986), num estudo em França, encontraram resultados que corroboram esta possibilidade. Os referidos autores verificaram que sob certas condições (como fraca densidade populacional, proporção equilibrada entre sexos e habitat muito favorável para o corço, com estrato herbáceo e arbustivo ricos e bem repartidos), que pelo que nos foi dado a aperceber se assemelham às presentes na área por nós estudada, a associação estável entre fêmea e macho constitui o caso mais frequente,

A observação de alguns grupos formados por um macho, uma a quatro fêmeas pressupõe serem unidades maternais, às quais se associou um macho e jovens do ano anterior (Casanova \& De Marinis, 1985).

No Verão, o aparecimento de crias, apenas a partir do dia 20 de Julho, explica-se por as progenitoras escolherem locais mais resguardados para parirem, o que dificulta a observação. Na fase inicial as crias passam 90% do tempo deitadas (Delorme \& Gaillard, 1990), passando a acompanhar a mãe após um mês, um mês e meio de idade Albaret (1987). O facto de não termos observado duas crias juntas é explicado por este último autor, como sendo frequente observar fềmeas acompanhadas por uma única cria antes de serem observadas com duas.

No Outono verificou-se uma descida acentuada no número de indivíduos isolados observados face ao número de grupos com 2 ou mais indivíduos. O facto de ter havido um menor número de observações não nos permite tirar elações sobre o comportamento dos animais, nesta época do ano.

\% Conclusões

Os indivíduos que constituem a população do Parque Nacional apresentam um comportamento com carisma tipicamente solitário. Os grupos observados são na maioria formados por 2 indivíduos, mãe e jovem ou casal, e durante o Inverno e a Primavera.

A ocorrência de grupos com um número superior a quatro mostrou-se esporádica.

7. RELAÇÕES INTER-ESPECÍFICAS

De acordo com a fauna existente na área estudada, o lobo, a raposa, o javali e algumas águias são potenciais predadores naturais do corço. A observação de vestígios da presença dos referidos mamíferos em muitas áreas, nas quais confirmámos a presença de corço, faz-nos pensar na existência de relações interessantes a averiguar.

Em relação ao lobo, Magalhães (1975) verificou que o corço constituía apenas $3,5 \%$ da sua dieta (valor determinado a partir do exame de amostras recolhidas nas Serras do Gerês, Montesinho, Nogueira e zona de Vila Real. Petrucci-Fonseca (1990) indica o valor de 4\% como a frequência de ocorrência de Capreolus capreolus na dieta do lobo a nível nacional e 3\% para a área das Matas de Albergaria/Palheiros no PNPG. Este autor encontrou ainda variações sazonais no consumo de corço na referida área, sendo a Primavera a estação do ano em que aquele atinge valor máximo (6\%), facto que nos parece estar relacionado com a época de nascimento de crias do cervídeo em questão. Esta interpretação é apresentada por Petrucci-Fonseca (1978) num estudo sobre o impacto do lobo na pecuária e na população de corços do Nordeste Transmontano. Segundo Moreira (1992) o corço constitui a principal presa selvagem do lobo no Parque Natural de Montesinho. Em populações de corço com baixa densidade, o lobo pode impedir a sua expansão (Pereira, 1985).

A raposa também evidencia provas de incluir o corço na sua dieta. Sendo vários os trabalhos efectuados no nosso País sobre os seus hábitos alimentares. Entre Fevereiro de 1976 e Julho de 1977, Valla-Pinto (1978) efectuou um estudo no Parque Nacional da Peneda-Gerês, que teve por principais objectivos conhecer os hábitos gerais de alimentação da raposa e sua variação sazonal e a pressão exercida por este predador sobre animais domésticos e espécies cinegéticas. Na análise de dejectos colhidos não foram encontrados pêlos de corço. Entre 1985 e 1987, Gomes (1989) verificou que na Serra do Gerês o corço integrava a dieta da raposa, embora numa percentagem muito reduzida ($0,7 \%$).

Moreira et al. (1989) concluíram, num estudo que teve lugar no Parque Natural de Montesinho, que a presença de corço no regime alimentar da raposa embora possa resultar da predação de crias, parece assumir um carácter de necrofagia. Ferreira (1991) constatou para a mesma área de estudo que o corço representa $4,7 \%$ da importância relativa dos mamíferos na dieta da raposa. Este autor defende também que o consumo deste artiodáctilo está relacionado com a existência de cadáveres de animais mortos pelo lobo, cujos restos são aproveitados pela raposa.

O facto de termos encontrado um dejecto de raposa com pêlos de corço (com cerca de 20\%), perto dos ossos de uma pata de corço, confirma a hipótese de esta ter sido comida por raposa (uma vez que pelo aspecto do osso não parecia ter sido comida por lobo). Contudo é provável que tenha ocorrido necrofagia.

O javali é referido sobretudo como predador de crias. Delorme \& Gaillard (1990) constataram que em zonas de elevada densidade, o javali é considerado essencialmente como um competidor indirecto dos jovens corços, por revolver o solo, limitando a área disponível utilizável como locais de repouso.

Tavares et al. (1989) num trabalho sobre o regime alimentar da águia real em Montesinho, não encontráram referências à inclusão de corço neste

Em relação ao garrano verificámos uma sobreposição de área com o corço, supondo-se no entanto que exista ao longo do dia um desfazamento na ocupação do mesmo espaço.

A presença de gado na serra parece revelar vários graus de influência sobre o corço. Em relação às cabras, embora Pereira (1985) defenda que estas competem com o corço por alimento, o registo de observações de corços entre as cabras a fairio (na serra sem pastor e cães), é bem exemplificativo da coexistência das espécies. De um modo geral, pensamos que a presença de gado (bovino e caprino) na serra, quando não acompanhado por cães, apesar de condicionar no tempo, a ocupação do espaço, parece não ser prejudicial a este cervídeo.

Em relação aos cães pensamos poder distinguir duas situações. A presença de cães de guarda de rebanhos, parece não influenciar negativamente o corço, uma vez que se caracterizam por um comportamento de defesa do rebanho, permanecendo normalmente junto ao mesmo. Pelo contrário constatámos que a utilização de cães de pequeno porte (normalmente também usados para fins cinegéticos) têm uma presença bastante marcada, provocando grande destúrbio. Este ano foram registadas várias observações de cães assilvestrados e domésticos, na proximidade das aldeias, a perseguirem corços. Valla-Pinto (1978) durante o estudo já referido no PNPG, observou dois cães a perseguirem uma corça, que acabaram por matar.

8. FACTORES DE PERTURBAÇÃO

Além de situações menos favoráveis já referidas nas relações inter-específicas, são conhecidos vários factores que provocam perturbação ao corço. O padrão de comportamento apresentado perante cada situação de perigo, reflecte a sua experiência prévia, traduzindo-se em diferentes níveis de precaução. Segundo Jeppesen (1984) o comportamento exibido face a uma determinada perturbação, depende da intensidade e origem desta. Regra geral o tráfego automóvel moderado assim como a presença humana ao longo de trilhos pedestres, apesar de parecerem não afectar significativamente os animais, condicionam o seu padrão de actividade.

Na área do Parque Nacional da Peneda-gerês, pensamos que os principais factores de perturbação à população de corço são:

Turismo - com maior expressão nos meses de Verão, a grande afluência de visitantes de que o Parque Nacional é alvo, manifesta influência negativa sobretudo pelo barulho (nomeadamente de motorizadas) e pelo facto das pessoas não respeitarem os percursos pedestres. É de referir que a ocupação por parte do corço de locais junto à estrada e zonas habitualmente utilizadas para piqueniques pressupõe uma estratégia de ocupação daquele espaço, na qual o animal se deve deslocar para zonas mais afastadas (locais de refúgio), quando ocorrem "invasões".

Fogo e desflorestações - têm provocado a destruição e fragmentação de áreas habitadas pelo corço. Por exemplo no caso da zona envolvente à foz do ribeiro do Pontido, foi efectuado o corte de uma área considerável de resinosas, onde várias vezes tinham sido observados adultos com crias. Após o corte pensamos ter ocorrido o abandono da área pela espécie. Contudo, pensamos que quando a desflorestação ocorre em áreas pequenas e parcelares de uma mancha florestal, os animais ocupam áreas próximas ao antigo domínio vital, sem evidenciarem grande perturbação. Esta constatação tem por base a observação do deslocamento de um conjunto de marcações, ao longo de uma linha, que o ano passado se encontravam sob coberto, para uma área limítrofe ao corte de floresta que integrava o seu antigo domínio.

Florestação - devido à limpeza prévia do estrato arbustivo normalmente efectuada, reduz-se a disponibilidade de alimento e abrigo. A arborização em larga escala, a monoespecificidade dos povoamentos, a incorrecta condução dos mesmos e uma escolha não adequada das espécies tendem a agravar esta redução de qualidade do habitat (Stelfox et al., 1973).

Caça - nomeadamente a furtiva, constitui um dos principais factores de perturbação, sendo ainda frequente em algumas áreas do Parque Nacional.

Segundo Bailey (1984 in Jeppesen, 1987), os factores que provocam stress são cumulativos sendo necessário considerar o impacto total de todas as perturbações no ambiente. Esta questão é nomeadamente importante nos cervídeos, uma vez que as actividades extras podem rapidamente conduzir o animal a um balanço energético negativo devido à redução do consumo diário de alimentos (Geist, 1975 in Jeppesen, 1987).

9. DISTRIBUIÇÃO ACTUAL DO CORÇO NO P. N. DA PENEDA-GERÊS

9.1 Distribuição actual

Introdução

As primeiras referências à ocorrência de corço no território em estudo encontram-se em inquirições-foros, a partir do século XIII. Em 1863, Barbosa du Bocage refere o corço unicamente nas áreas montanhosas do Gerês, juntamente com a cabra montês (Pereira \& Moço, 1977).

Neves (1952) refere o corço como o único vertebrado da lista de espécies inventariadas na Serra do Gerês cuja existência estava limitada àquela região e como o elemento mais característico da fauna geresiana, então existente. Este autor refere ainda que: "...foi anunciado o aparecimento deste cervídeo noutras serras a norte do Douro, entretanto só no Gerês parece ter o seu habitat preferido, onde durante muito tempo se encontrou limitado."

O primeiro mapa com registo das áreas de ocorrência do corço no Parque Nacional é apresentado por Bessa em 1972 (figura 5, página 34).

Em 1977, Pereira \& Moço indicam as zonas do Soajo e do Gerês como as únicas, no território por nós abordado, com existência de corço.

Desde 1987, a área de distribuição do corço no Parque Nacional tem sido actualizada por técnicos do I.C.N., através de um sistema de recolha de dados, inquéritos anuais e trabalho de campo (figura 6, página 34).

Pretendemos neste capítulo contribuir para a actualização do conhecimento da área de distribuição do corço no Parque, de acordo com a informação disponível, caracterizá-la e compará--la com dados anteriores, num esforço de definir a evolução da ocupação espacial deste cervídeo.

$\%$ Metodologia

A elaboração da actual carta de distribuição do corço teve por base três fontes de informação:
a) Inquéritos: com vista à recolha do máximo possível de dados relativos à observação de corços, efectuámos inquéritos orais entre os residentes de aldeias e lugares pertencentes às delegações de Arcos de Valdevez e de Montalegre (sobretudo pastores). Quanto à área da delegação de Terras de Bouro, não se realizaram tais inquéritos uma vez que houve uma cobertura da mesma por funcionários do PNPG, que registavam todas as observações que efectuavam ou de que tinham conhecimento.

Na área da delegação de Montalegre realizámos inquéritos a residentes de 11 aldeias ou lugares (segunda semana de Março): Fafião, Pincães, Cabril, S. Lourenço, Lapela, Sela, Sirvozelo, Covelães, Travassos do Rio, Pitões das Júnias e Tourém. Na área da delegação de Arcos de Valdevez os inquéritos foram efectuados a residentes de 27 locais (primeira semana de Maio): Eiras, Mareco, Laceiras, Castro Laboreiro, Ameijoeira, Canheiras, Curral do Gonçalo, Portos, Travessa, A-doFreire, Portelinha, Lamas de Mouro, Sr^{a} da Peneda, Rouças, Gavieira, Adrão, Lordelo, Vilela Seca, Avelar, Mezio, Cunhas, Paradela, Várzea, Lindoso, Lourido, Ermida e Germil. Para além destes, efectuámos inquéritos sempre que nos deslocámos a estas áreas, embora neste caso a abordagem fosse ocasional e não sistemática, como anteriormente.

Nos inquéritos, procedemos ao registo dos dados referentes a observações directas (local, data, comportamento dos animais, caracterização do biótopo de ocorrência, entre outros aspectos) e indícios de presença da espécie (pegadas, dejectos, camas e marcações). O conhecimento da ocorrência de corço em algumas áreas, sem que tivesse sido possível confirmar o número de animais observados ou a data de observação, foi considerado como local com presença conhecida. A ficha utilizada para registo encontra-se em anexo (VIII-6).

Todas as informações recolhidas foram submetidas a uma análise, de forma a que, sempre que suscitassem dúvidas, procurássemos efectuar observações no campo com o objectivo de confirmar a presença de corço. Os casos que permaneceram duvidosos não foram considerados.
b) Observação de vestígios: efectuada pelo processo já referido. Foram ainda registadas as localizações de uma haste, de pêlos e dos restos de um membro posterior de corço.
c) Observação directa: realizada pelo processo atrás referido, é contudo de salientar que o esforço de observação foi maior na zona central do Parque.

\% Resultados e discussão

Os resultados obtidos apresentam-se numa carta à escala 1:250.000, elaborada com base na Carta Militar de Portugal (SCE) à escala 1:25.000, dividida em quadrículas de 100 ha por sobreposição da Quadrícula Principal Quilométrica UTM Fuso 29, Elipsóide Internacional - Datum Europeu, à semelhança da carta de distribuição apresentada por Carmo et al. (1989).

Numa análise global concluímos que o corço se encontra espalhado um pouco por todo o Parque, constituindo a Serra do Gerês a área mais importante, quer pela sua dimensão, quer pela densidade populacional verificada em algumas zonas. Destacam-se entre estas, três núcleos de concentração principais: no limite Oeste - Rio Homem/Matas de Albregaria-Palheiros/Rio Gerês (onde se obteve um maior número de registos), no centro - entre Carris e Compadre e no limite Este - Mata do Beredo/Pitões das Júnias. Na restante área observam-se ainda outros núcleos de concentração importantes nas zonas de Castro Laboreiro/Serra da Peneda, Fafião/Pincães e Tourém/Covelães.

Numa análise mais pormenorizada, confirmámos a presença de corço em 121 quadrículas (cerca de $16,9 \%$ da área do Parque): destas 85 foram obtidas por observação directa ($12,2 \%$) e 38 por observação de vestígios ($4,7 \%$). Registámos ainda a presença conhecida da espécie em 117 quadrículas ($16,3 \%$ da área total do PNPG).

Embora os dados relativos a 1987-1989 (figura 6) e a 1993-1994 (figura 7, página 42) não provenham de uma mesma intensidade de recolha de informações em toda a área do Parque Nacional, a comparação das cartas de distribuição do corço, nos respectivos períodos, permite pressupor algumas algumas alterações significativas, nomeadamente nas áreas do Ramiscal, Serra Amarela e zona sul da Serra do Gerês.

Com efeito, há áreas em que os resultados obtidos apontam um eventual decréscimo no efectivo da espécie ou para uma deslocação dos animais dos locais ocupados em anos anteriores para outros, em que há menor probabilidade de serem observados. Simultaneamente, há áreas em que parece existir uma tendência contrária como é o caso da aparente expansão da área ocupada pelos núcleos de corço da Serra da Peneda (para áreas envolventes ao Planalto de Castro Laboreiro) e da Serra do Gerês (para Sul). Nesta última, tal parece ser resultante da interdição da caça e do condicionamento
do turismo, aplicados à área das Matas de Albergaria/Palheiros. Relativamente ao primeiro caso, são várias as causas prováveis:

- Na área do Ramiscal pensamos ser o pastoreio em excesso e os incêndios (pela destruição do habitat) os principais factores responsáveis pela actual situação.
- Na área da Serra Amarela tivemos muita dificuldade em obter informações, uma vez que nos últimos anos se verifica um descida acentuada do número de pastores. Embora com um ritmo inferior, a serra continua a ser percorrida, na sua quase totalidade, pelos pastores das diferentes aldeias, não havendo conhecimento de ter sido observado algum animal nos anos mais recentes, nem ter sido encontrados quaisquer vestígios. A caça furtiva, com tradicional expressão nesta área, poderá ser o principal factor responsável por esta situação. A Mata do Cabril, referida por Bessa (1972) como um local com densidade regular de corço, sofreu um forte incêndio há cerca de quatro anos, encontrando-se praticamente intransitável. Na sua travessia não encontrámos qualquer indício da presença de corço.
- No núcleo de Tourém/Covelães parece observar-se um decréscimo na área de distribuição, embora menos significativo que os anteriores. Pensamos ser a pressão exercida pelo furtivismo a causa mais provável para este facto.

De acordo com o apresentado nos capítulos anteriores são vários os factores que condicionam a ocorrência do corço. Por este motivo e segundo Staines (1974), pensamos que as áreas ocupadas devem oferecer uma combinação razoável dos factores condicionantes da presença deste cervídeo. Esta análise terá lugar no capítulo da distribuição potencial.

$\%$ Conclusões

Desde 1972 que se mantêm individualizados núcleos importantes de ocorrência da espécie, embora evidenciando algumas alterações.

Os núcleos das Serras da Peneda e do Gerês encontram-se, provavelmente, em expansão para norte e sul, respectivamente. Os núcleos do Mezio/Ramiscal e Serra Amarela parecem estar em declínio, sendo necessário um estudo mais aprofundado nestas áreas para confirmar esta tendência. O núcleo de Tourém/Covelães evidencia uma ligeira redução na área de distribuição. A destruição do habitat, a caça e o pastoreio em excesso parecem-nos estar na base dos resultados obtidos.

Com características muito diversas, os locais em que foram observados animais repartem-se desde vales a cumeadas, bosques densos a matos e descampados, zonas de dificil acesso a zonas próximas de habitações.

9.2 Biótopos de ocorrência

O conhecimento dos biótopos mais utilizados pelos animais, fornece dados sobre a sua importância relativa para a espécie.

Com esta finalidade procedemos à análise dos biótopos em que se encontravam os animais quando observados, para o que dispunhamos de 152 registos com esta informação.

Os resultados obtidos apresentam-se no quadro IV. Da análise deste destaca-se uma clara preferência do corço por carvalhais ($34,2 \%$), provavelmente por este tipo de habitat fornecer abrigo
e alimento durante grande parte do ano. Em segundo lugar, encontram-se os povoamentos mistos de folhosas e resinosas ($17,8 \%$). Relativamente aos povoamentos de resinosas a frequência de ocorrência é superior ao que esperariamos (dado o aproveitamento/utilização que o corço poderá fazer deste tipo de povoamento), o que poderá ser justificado pela abundância deste tipo de coberto na área do PNPG. O facto do valor obtido para povoamentos de resinosas ser superior ao de resinosas com mato, pensamos resultar não de uma maior utilização, mas sim da maior facilidade em observar os animais nesse meio do que na presença de mato.

A utilização considerável de matos ($10,5 \%$) é compreensível pelo facto de a alimentação do corço ser predominantemente arbustiva, por este tipo de biótopo constituir, pelas pequenas dimensões do animal, um refúgio por excelência, como já referido, e ainda por permitir ao animal deslocar-se de forma relativamente protegida.

A utilização de lameiros/culturas agrícolas mostrou ser baixa ($4,0 \%$) o que nos parece estar associado ao facto de o corço, em relação aos espaços abertos, se alimentar predominantemente na orla destes, refugiando-se rapidamente quando pressentida uma fonte de perigo.

Não verificámos variações na ocupação dos biótopos em função da estação do ano. É de realçar a relação estreita entre os resultados obtidos e os hábitos da espécie.

Maublanc (1989) num estudo para averiguar se o corço apresentava preferência por alguns biótopos, com base na ocorrência de vestígios, não encontrou quaisquer preferências por folhosas ou resinosas, nem por florestas abertas ou mais densas.

	Frequência Absoluta	Frequência Relativa
Folhosas Diversas	9	5,9
Carvalhal	52	34,2
Folhosas + resinosas	27	17,8
Resinosas	23	15,1
Resinosas + Matos	19	12,5
Matos	6	10,5
Culturas agrícolas	$\mathbf{1 5 2}$	$\mathbf{1 0 0} \%$
Total de Observações		4,0

Do conhecimento dos hábitos da espécie e do facto de termos registado a ocorrência do corço em diversos biótopos, podemos induzir que este cervídeo tenha preferência por áreas com uma diversidade de biótopos elevada.

10. DISTRIBUIÇÃO POTENCIAL E ESTIMATIVA DE DENSIDADE

10.1 Distribuição potencial

\% Introdução

O conhecimento da qualidade do habitat disponível para uma dada espécie constitui uma premissa fundamental para o ordenamento e conservação dessa espécie no ecossistema em que se integra.

Cada tipo de habitat tem uma adequação diferente para cada espécie animal, do mesmo modo que cada espécie ou grupo de espécies têm necessidades vitais distintas (Ferreira \& Romão, 1987). Segundo estes, o reconhecimento das necessidades vitais, numa escala apropriada para o ordenamento e conservação a nível regional, requer uma classificação objectiva e compreensiva dos habitats utilizados pela fauna.

A maior parte da variação observada no número de espécies e no número de indivíduos de uma dada população, resulta dos diferentes graus de disponibilidade de alimento, coberto e água, entre outros requisitos e das características estruturais do habitat (USFWS, 1980 in Ferreira \& Romão, 1987).

A análise de um habitat, consiste na descrição de um sistema com a maior objectividade possível, resultando esta descrição das observações do sistema, da sua estrutura, dinâmica e relações. A avaliação de um habitat faz-se através da sua análise e respectiva valorização, resultando como conclusão o estado relativo do habitat (Ferreira \& Romão, 1987).

Nas duas últimas décadas têm sido desenvolvidas algumas metodologias com o objectivo de avaliar quantitativamente os componentes do habitat necessários para a fauna. Estes métodos utilizam conhecimentos empíricos e científicos, reduzindo a subjectividade de uma avaliação pessoal e, consequentemente, aumentando a sua utilidade pela maior uniformização dos critérios (Ferreira \& Romão, 1987). Para além da apreciação do habitat as metodologias aplicadas permitem ainda desenvolver estudos de impacto ambiental a curto e médio prazo, estudos de ordenamento cinegético, avaliar efeitos de aç̧ões de planeamento da vida selvagem, calcular o valor relativo de diferentes áreas no mesmo instante ou calcular o valor relativo de uma área ao longo do tempo. Os beneficios deste tipo de metodologia são consideravelmente apreciados mesmo a nível específico, sendo exemplo um estudo de avaliação dos recursos de um habitat em função de diferentes usos biológicos - uso do habitat com beneficio para uma dada função biológica, ao longo do ano (Stocker \& Gilbert, 1977).

Em Portugal as abordagens a metodologias para avaliação de potencialidades tiveram início na década de 80 (Guerreiro, 1980; Nogueira, 1980; Borges, 1981; Romão, 1985; Carmo, 1986; Carmo et al., 1986; Ferreira \& Romão, 1987; SNPRCN, 1988; entre outros). De acordo com a bibliografia consultada pensamos estar perante dois tipos de metodologias: uma de carácter mais geral que designaremos por método das quadrículas e outra de carácter mais rigoroso conhecida por método HEP (Habitat Evaluation Procedures).

Neste trabalho procurámos avaliar as potencialidades do habitat para o corço numa parcela da área estudada, com base nas duas metodologias adiante apresentadas. Pretendemos ainda realçar os principais factores condicionantes da presença de corço nas diferentes áreas avaliadas. Por nos parecer vantajoso abordaremos as duas metodologias separadamente.

\square Método das quadriculas:

\% Metodologia

À semelhança da metodologia utilizada por Romão (1985), elaborámos uma carta de potencialidades do habitat para o corço para toda a área da delegação de Terras de Bouro, Matas do Ramiscal e do Cabril, vale do Rio Mau e zona montante do vale do Ribeiro do Beredo, tendo como base a carta anteriormente apresentada para a distribuição actual do corço no Parque Nacional.

Após a selecção da área a avaliar, que teve por base razões já citadas, procedemos à identificação dos principais parâmetros do habitat nas áreas consideradas, que condicionam a presença do corço, assim como dos factores de perturbação.

A conjugação das características da área com o conhecimento da ecologia da espécie permitiram--nos seleccionar quatro parâmetros principais: Abrigo/Refúgio, Alimentação, Água e Perturbação.

Para cada parâmetro foram definidos quatro níveis, à excepção do parâmetro Água ao qual foram atribuídos apenas três níveis, de idêntico efeito sobre a espécie, atendendo a aspectos da biologia, etologia e necessidades em termos de habitat, em que se fez corresponder uma escala de valores (anexo VI-1), que passamos a explicitar, de forma resumida:

- Abrigo/Refúgio (de 0 a 3) - valorizámos as manchas que forneciam bom coberto térmico e em menor grau as que proporcionavam apenas coberto de fuga;
- Alimentação (de 0 a 3) - os tipos de coberto com maior pontuação foram as folhosas e lameiros uma vez que o corço necessita de uma alimentação variada que inclua erva, folhas, rebentos e frutos florestais (Pereira \& Moço, 1977);
- Água (de 0 a 2) - embora não seja forçosamente necessária para o corço a presença de água no estado livre (se a houver noutras formas), a pontuação atribuída aos três níveis deste parâmetro baseia-se na presença/ausência de água nos meses mais quentes e pela importância que a respectiva vegetação associada tem para o corço;
- Perturbação (de 0 a 3) - tivemos em atenção a influência de forte presença humana, a que atribuímos o valor mínimo e, embora com menor peso, considerámos o pastoreio como um factor prejudicial à ocorrência de corço, não só pela perturbação que provoca (através de cães e queimadas), mas também pela competição alimentar, em especial com as cabras (Pereira \& Moço, 1977).

Uma vez estabelecida a escala de valores para cada parâmetro procedeu-se à atribuição das pontuações parciais no terreno, quadrícula a quadrícula. Esta avaliação baseou-se na observação global da área com prospecção in loco.

Após a atribuição das pontuações parciais em cada quadrícula, fez-se corresponder ao valor total uma das três classes de qualidade estabelecidas:

- Classe I - quadrículas com valor total de 9 a 11, inclusivé, correspondem a zonas de maior potencialidade do habitat para o corço;
- Classe II - quadrículas com valor total de 6 a 8 , inclusivé, correspondem a zonas de potencialidade intermédia para o corço;
- Classe III - quadrículas com valor total de 0 a 5 , inclusivé, correspondem a zonas com fraca potencialidade do habitat para o corço.

$\%$ Resultados e discussão

Para a elaboração da carta de potencialidades apresentada (figura 8, página 43) foram avaliadas 233 quadrículas, localizando-se 22 na área da delegação de Arcos de Valdevez, 51 na área da delegação de Montalegre e 160 na área da delegação de Terras de Bouro. Segundo as classes estabelecidas, 22 das quadrículas avaliadas ($9,4 \%$) mostraram pertencerem à classe I, $128(54,9 \%)$ à classe II e $79(33,9 \%)$ à classe III.

A análise das pontuações parciais de cada quadrícula permite identificar os principais factores responsáveis pelo valor total atribuído.

Delegação de Arcos de Valdevez:

- Na área da Mata do Ramiscal foram avaliadas 12 quadrículas, classificadas na sua maioria como zonas de potencialidades intermédias. Embora os parâmetros Abrigo/Refúgio e Alimentação não apresentem valores máximos, atribuímos à forte pressão exercida pelo pastoreio, que se faz sentir desde as cumeadas envolventes às profundezas do vale, a principal causa pela área prospectada não apresentar maiores potencialidades. Acresce a esta pressão a ocorrência de queimadas nas zonas envolventes do vale. Esta interpretação é apoiada pelo facto de uma vez percorrida a área, não termos encontrado quaisquer vestígios da presença de corço, assim como só termos registado um único animal observado nos últimos anos.
- Na área da Mata do Cabril avaliámos 10 quadrículas localizadas na zona montante do vale do Rio Cabril. Esta zona apresenta potencialidades intermédias a elevadas, constituindo a inacessibilidade e a regeneração de espécies autóctones, os principais factores responsáveis pelos valores encontrados. Contudo, não se exclui a aç̧ão do furtivismo como explicação para a escassa ocorrência de vestígios e a ausência de registo de observações directas nos últimos anos.

Delegação de Terras de Bouro:

A área da delegação de Terras de Bouro foi avaliada na sua globalidade, perfazendo um total de 160 quadrículas. Embora esta área apresente uma grande variedade de combinações entre os vários níveis de cada parâmetro, pensamos ser possível definir algumas zonas nas quais se salientou um ou outro parâmetro num conjunto de quadrículas.

- Matas de Albergaria/Palheiros: correspondem na carta de potencialidades ao principal núcleo de quadrículas da classe I, atingindo algumas os níveis máximos para os quatro parâmetros. De facto, a variedade da vegetação e a forma como se distribui no espaço e no tempo, associadas à abundância de água durante todo o ano e , de um modo geral, à fraca perturbação, proporcionam à espécie um habitat que em tudo pensamos satisfazer as suas necessidades. As áreas envolventes apresentam potencialidades intermédias, estendendo-se pelo vale do Rio Homem e vale do Rio Gerês. Os valores encontrados nesta área envolvente são reflexo da intensa presença humana ao longo de todo o ano (embora mais acentuada no Verão) e da ocorrência de uma mancha significativa de espécies exóticas na margem direita do Rio Gerês, junto à Vila com o mesmo nome.

Figura 7 : Carta de distribuição do corço no Parque Nacional da Peneda-Gerês

膡 Presença confirmada por observação directa
\% Presença confirmada por observação de vestígios
Presença conhecida
Escala

Pág. 42

Figura 8 : Carta de potencialidades do habitat para o corço no Parque Nacional da Peneda-Gerês

Escala

- Zona entre Campo do Gerês e Barragem da Caniçada: as baixas potencialidades encontradas para esta zona resultam do intenso pastoreio que se faz sentir e da reduzida oferta de coberto para a espécie. A margem direita do Rio Caldo já apresenta potencialidades intermédias do habitat para este cervídeo, pela presença de lameiros e folhosas, correspondentes a níveis mais elevados para os parâmetros Abrigo/Refúgio e Alimentação. Contudo, o parâmetro Perturbação apresenta um valor mínimo face à forte presença humana.
- Zona definida pelos Prados da Messe/Borrageiro/Teixeira até ao limite Este da delegação: esta zona caracteriza-se por um mosaico de quadrículas pertencentes às classes II e III, embora com predomínio desta última. O habitat apresenta níveis baixos para o Abrigo/Refúgio e para a Alimentação, à excepção de algumas corgas, cuja vegetação permite a atribuição de níveis mais elevados para os parâmetros citados. Ao contrário do suposto pela sua inacessibilidade, o pastoreio está presente numa parte considerável da área.
- Zona Sul da delegação, entre a foz do Rio Gerês e o Rio Fafião: a associação de povoamentos de resinosas a matos variados conferem a esta zona potencialidades intermédias para o corço.

Delegação de Montalegre:

- Na zona montante do vale do Ribeiro do Beredo avaliámos 17 quadrículas. As quadrículas junto à fronteira enquadram-se na classe III, sobretudo pela ausência de coberto. Ao longo do vale as quadrículas não apresentam valores superiores pela presença de pastoreio. Pensamos que as zonas mais afastadas da aldeia de Pitões das Júnias constituirão áreas com potencialidades mais elevadas do que as encontradas.
- Na zona do Planalto da Mourela foram avaliadas 12 quadrículas, representando no seu conjunto uma das áreas avaliadas com menores potencialidades para o corço. Atribuímos o nível mínimo ao parâmetro Abrigo/Refúgio. A intensa acção exercida pelo pastoreio e consequente ausência de matos variados, constituem outros factores elucidativos da classificação atribuída.
- Na zona do vale do Rio Mau, foram avaliadas 22 quadrículas, constatando-se que esta zona constitui, na sua parte central, uma das mais propícias à ocorrência de Capreolus capreolus. De facto, o mosaico formado pelos lameiros e bosquetes oferece a este cervídeo níveis óptimos para os parâmetros Abrigo/Refúgio e Alimentação. Demonstrativa desta situação é a atribuição da classe I a 4 quadrículas desta área.

Embora tenhamos verificado uma boa adaptação entre os parâmetros e níveis seleccionados e as características exibidas pelas áreas, está implícita em muitas situações uma subjectividade considerável. Sentimos dificuldades, por exemplo, em avaliar quadrículas com vários tipos de coberto, nas quais foi necessário quantificar a área ocupada por cada povoamento, assim como ter presente a importância relativa que estes apresentam para os diferentes parâmetros seleccionados. Sempre que surgiram dúvidas optámos pelos valores mais baixos, o que poderá ter conduzido a situações de subestimação. O facto da avaliação ter sido efectuada sempre pelo mesmo observador pressupõe que se tenha mantido a relatividade entre as quadrículas.

Da sobreposição das cartas de distribuição actual e de potencialidades (109 quadrículas) é possível constatar que a classe de qualidade mais frequente é a intermédia (67 quadrículas, equivalendo a $61,5 \%$ do total) e que o valor percentual mais elevado ($44,0 \%$) corresponde à intersecção qualidade intermédia/presença de corço confirmada. Das 22 quadrículas que foram
classificadas como classe I ($16,5 \%$ do total), em $16(72,7 \%)$ foi confirmada a presença da espécie. Em relação à classe III ($22,0 \%$ do total) foi confirmada a ocorrência de corço em 75% das quadrículas com sobreposição.

\% Conclusões

Das áreas avaliadas quanto às potencialidade do habitat para o corço, salientam-se as Matas de Albergaria/Palheiros como a zona com potencialidades mais elevadas. Embora com áreas menores, a Mata do Cabril, o vale do Ribeiro do Beredo e o vale do Rio Mau, apresentam-se também com potencialidades elevadas. A Mata do Ramiscal, e de uma forma geral, as corgas na área da delegação de Terras de Bouro, caracterizam-se por apresentarem potencialidades intermédias. As zonas mais descampadas, como o Planalto da Mourela e regiões planálticas na Serra do Gerês, mostraram baixas potencialidades para este cervídeo. O pastoreio e a intensa presença humana que se verifica nalgumas das zonas prospectadas mostraram, nesta abordagem, terem um peso negativo significativo.

ZMétodo HEP

$\%$ Metodologia

A zona das Matas de Albergaria/Palheiros, por razões já referidas, foi alvo de uma metodologia de avaliação de potencialidades do habitat mais pormenorizada e conhecida por HEP, com base numa adaptação do modelo, específica para o corço, apresentada por Carmo (1986).

A premissa fundamental deste método é que a quantidade e qualidade do habitat podem ser numericamente descritas, através de um Índice de Adequação do Habitat (HSI- Habitat Suitability Index) que varia entre 0 - habitat totalmente inadequado e 1 - habitat com adequação máxima. Este índice, multiplicado pela área total disponível fornece-nos as Unidades de Habitat (HU) (Carmo, 1986), que representam o equivalente desta área, em habitat com adequação máxima para a espécie.

Assim, a credibilidade do HEP e a significância das unidades de habitat dependem directamente da capacidade do utilizador para estabelecer modelos HSI bem definidos para a espécie avaliadora, sendo esta credibilidade tanto maior quanto melhor se puderem documentar os critérios de elaboração dos modelos e mais apurada for a verificação dos mesmos. Esta verificação pode ser feita através da revisão pelos autores, da análise com dados amostrais, da revisão por especialistas e do teste com dados de campo, isoladamente ou em conjunto (Carmo, 1986).

Uma vez delimitada uma área de estudo de 2400 ha e conhecidos os tipos de coberto presentes, procedeu-se à construção do modelo segundo Carmo (1986). Com base no conhecimento do uso do habitat pela espécie, seleccionaram-se as variáveis alimentação, abrigo e tranquilidade. A variável água não foi considerada por não se revelar crucial para o corço e por já ter sido abordada a um nível mais geral. A não existência de uma carta de vegetação actualizada impediu que o efeito de orla integrasse as variáveis a avaliar.

À semelhança da relação número de pontos/dimensões da área apresentada por Carmo et al. (1986), foram seleccionados sistematicamente 10 pontos (a intervalos fixos através de toda a área), tendo-se considerado para efeitos de avaliação, a área num raio de 50 m .

A ficha utilizada para registo de dados encontra-se em anexo (VIII-7).

\% Resultados e discussão

Os pontos seleccionados para a avaliação encontram-se assinalados num mapa (anexo I-2). O valor médio encontrado para o HSI é de 0,758 , sendo o valor mais elevado de 0,93 - Curral de S . Miguel e o mais baixo de 0,43 - Calvos (anexo VI-2). A análise destes valores permite-nos concluir que a área amostrada apresenta um habitat, no seu conjunto, com uma boa adequação para a espécie.

Embora o modelo tenha sido construído tendo por base um bom conhecimento da área a abordar e da ecologia da espécie, a inexperiência do observador na recolha de dados no campo é por certo um factor a considerar na fiabilidade dos resultados.

Comparando o valor médio para a totalidade desta área, obtido pelo método das quadrículas (transformado em índice), com o valor do HSI, verifica-se uma confluência de valores que é ainda mais visível se no primeiro caso não for considerada a variável Água (que tem valor constante e máximo em toda a área), já que também não foi considerada no modelo HSI utilizado. Eliminando esta variável, encontra-se, assim, uma coincidência de resultados entre os dois métodos: 0,759 para o índice calculado a partir do valor obtido pelo método das quadrículas e 0,758 para o HSI.

Tal como o método das quadrículas, o modelo HSI utilizado não integra relações inter-específicas como por exemplo as relações predador-presa, essencialmente devido à escassez de dados que permitissem a sua correcta integração no conjunto do modelo.

A metodologia aplicada não nos dá directamente densidades potenciais de uma dada espécie para um determinado habitat. No entanto, se conjugada com observações de campo e censos, pode-se estabelecer uma relação linear ou linearizável com a capacidade de sustentação do meio (Ferreira \& Romão, 1987).

\% Conclusões

O valor de 0,758 , obtido para o índice HSI, permite-nos concluir que a área amostrada revela boa adequação para o corço, equivalendo a 1819 ha de habitat com adequação máxima para a espécie (HU).

A coincidência de valores encontrada entre os dois métodos utilizados, leva-nos a pensar que a selecção de variáveis e a valorização das mesmas tenha sido razoavelmente correcta.

10.2 Estimativa de Densidade

\% Introdução

Segundo Odum (1971) a densidade populacional é a grandeza da população em relação a uma unidade de espaço. A densidade absoluta define-se pela razão entre o número de indivíduos ou biomassa populacional e a unidade de área do espaço total, sendo dificil de calcular na maioria dos casos. Assim, o cálculo de densidades relativas (i. e. a comparação de densidades presentes em duas áreas) apresenta-se mais exequível e adequado (Krebs, 1978 in Castro, 1992).

A densidade caracteriza-se, como outros parâmetros populacionais, por uma grande variação no espaço e no tempo. Existem contudo limites superiores e inferiores definidos por um conjunto de factores intrínsecos às características do ecossistema e da espécie.

Pretendemos neste capítulo apresentar uma estimativa da densidade de animais presentes numa área parcial das Matas de Albergaria/Palheiros, com o objectivo final de podermos inferir sobre densidades prováveis noutras áreas, com base na carta de avaliação de potencialidades.

$\%$ Metodologia

Com o intuito de alcançar os objectivos apresentados, na área envolvente ao vale do Ribeiro das Gramelas, Cortado de Calvos, Curral de S. Miguel, Cabeço e Costa de Palheiros e parte norte da Mata de Albergaria, utilizámos várias metodologias que passamos a apresentar:

- Observações em pontos fixos - pelo processo já referido.
- Percursos - pelo processo atrás apresentado. Na área das Matas de Albergaria/Palheiros procedemos à realização simultânea de percursos, por vários observadores, com registo da localização e hora das observações e direcção de fuga dos animais (Hoffmann, 1975; Delorme, 1989 e Léonard et al., 1991).

Resultados e discussão
Durante as observações, em locais fixos, foram observados dez animais e ouvidos catorze (com repetições). Pensamos que as condições atmosféricas (nomeadamente frio e vento forte) que se fizeram sentir durante as observações tenham influenciado, de forma negativa os resultados obtidos, como já referido.Por se ter revelado pouco produtivo, o método da realização de percursos simultâneos foi abandonado, após as primeiras utilizações.

Todos os animais com ocorrência registada na área por nós seleccionada foram registados num mapa (anexo VII-1), perfazendo um total de 36 animais observados (anexo VII-2) e 25 ouvidos, e não observados (anexo VII-3).

Cartografados os dados de que dispunhamos (animais observados e ouvidos, comportamento dos mesmos, trilhos e marcações), procedemos à análise destes o que nos permite pressupor que foram observados 25 animais distintos (8 machos adultos e 2 jovens, 9 fêmeas adultas e 4 jovens e 2 crias). Contudo, pelo conhecimento da estrutura social da espécie e pela análise de trilhos e marcações pensamos estarem presentes mais 6 animais adultos (3 machos e 3 fêmeas). Uma vez que a área considerada apresenta 400 ha (em carta), a densidade encontrada é da ordem de 7 a 8 animais por 100 ha. Dado que por este método, a observação não é exaustiva, estimamos para a referida área uma densidade de 10 animais por 100 ha. Boutin (1990) numa visita ao Parque Nacional da PenedaGêres indica que a densidada de corço poderá variar de 2 a mais de 10 corços por 100 ha, ocorrendo as densidades mais elevadas em zonas muito restritas, nas quais as Matas de Albergaria/Palheiros estão por certo incluídas.

Por outro lado, a área utilizada para a estimativa de densidades equivale a 303 ha de área útil, calculada pelo método HEP anteriormente apresentado. Assim, com base nos valores obtidos a partir dos animais observados, corresponderá a esta área uma densidade de 8 a 10 animais por 100 ha.

Uma vez que à área seleccionada para a estimativa de densidades foram atribuídas classes de qualidade do habitat com valor médio 9 , pensamos que áreas classificadas como tendo potencialidade elevada para o corço, possam suportar 12 ou mais animais por 100 ha .

Com base na bibliografia consultada constatamos que são vários os factores que condicionam a densidade. Strandgaard \& Klein (1972) indicam a inter-acção social e Bobek (1977) num estudo na Polónia verificou que animais que vivem em florestas com grande disponibilidade alimentar no Verão, ocupam um território mais pequeno, do que os que habitam áreas mais pobres.

São vários os valores de densidades apresentados para meio florestal. Em França, por exemplo, o número de animais presentes em 100 ha pode variar entre 1 a 2 (Vincent et al., 1986 e Cibien \& Aine, 1990) e 20 a 25 (Vincent \& Bideau, 1992).

$\%$ Conclusões

Uma vez que parece que a população se está a expandir na área das Matas de Albergaria/Palheiros, espera-se que os machos mais novos sejam levados a ocuparem novas áreas na proximidade das ocupadas pelos indivíduos mais velhos (Klein \& Strangaard, 1972). No estudo de uma população de Capreolus capreolus em França, Vincent \& Bideau (1992) verificaram que um aumento importante da densidade acarreta novos arranjos no espaço e na organização social, repercutindo-se ainda no peso e processo reprodutivo dos indivíduos.

Segundo Stradgaard (1972) quando o alimento é abundante e o coberto óptimo espera-se encontrar as maiores densidades de corço, uma vez que as potencialidades do habitat são mais elevadas. Pensamos ser o caso, no PNPG, das Matas de Albergaria/Palheiros.

A relação da densidade estimada pelos dois métodos sugere que a avaliação de potencialidades foi razoavelmente bem aplicada, dada a convergência dos valores encontrados.

De acordo com um trabalho realizado em França (CEMAGREF, 1984) sobre a densidade de corço em habitat arborizado, a densidade de 8 a 10 animais por 100 ha (valor por nós encontrado) é classificada como média.

11. MEDIDAS DE CONSERVAÇÃO E GESTÃO

Segundo Staines (1974) é necessário perceber os fundamentos do comportamento dos cervídeos, assim como as suas necessidades de forma a se poder melhorar a gestão e prever as consequências de alterações no habitat ou uso da terra. Assim, a conservação e gestão de qualquer espécie está intimamente relacionada com a conservação e gestão do habitat que aquela ocupa:

Medidas de conservação e gestão para o habitat :

- Ordenamento florestal :

Manutenção de uma estrutura de mosaico/plantação de áreas ardidas com carvalhos e outras folhosas, nomeadamente bétulas, castanheiros e ripícolas.
Seguimento de uma política de cortes adequada (recurso a cortes salteados) assegurando sempre a conservação das áreas envolventes às linhas de água, numa faixa de 150 a 200 m ;

- Condução/tratamento dos povoamentos florestais adequada às características da espécie. O ideal é o recurso a povoamento jardinados, isto é, constituídos por indivíduos das diferentes classes de idade. Matos altos, folhosas com porte arbustivo e silvas nunca devem ser retirados na totalidade, de forma a continuarem a fornecer abrigo e alimento a animais que ocupem aquela área;
- Ordenamento silvopastoril, com especial atenção para o controlo das queimadas (de forma a não serem destuidas zonas de matos importantes para abrigo) e para a redução do sobrepastoreio que se faz sentir em diversas zonas, como por exemplo a Junceda, de forma a permitir o crescimento da vegetação;
- Vigilância e prevenção de incêndios;
- Controlo da propagação de exóticas e substituição por vegetação natural, nomeadamente na margem direita do Rio Gerês;
- Ordenamento na expansão ou abertura de novas vias de comunicação, de forma a evitar o fraccionamento do habitat;

Medidas de conservação e gestão para a espécie :

- Continuação do estudo da biologia e ecologia da espécie, nomeadamente no que diz respeito ao padrão da ocupação e utilização do espaço e do tempo, por radiotelemetria;
- Determinação das densidades populacionais nas áreas mais importantes e sua monitorização;
- Caracterização detalhada dos biótopos de ocorrência;
- Manutenção de uma carta de distribuição actualizada;
- Elaboração de uma carta de potencialidades para todo o Parque Nacional;
- Ordenamento cinegético:

Controlo e fiscalização da caça, principalmente junto à linha de fronteira entre a Mata do Cabril e o Ribeiro do Beredo;

Interdição da caça em algumas áreas de especial importância para o corço e reforço da fiscalização nas principais áreas sujeitas ao furtivismo;

- Controlo/erradicação dos cães vadios;
- Controlo sobre cães domésticos mal alimentados que se deslocam à serra;
- Fiscalização do pastoreio (necessidade de pôr fim à utilização de cães de caça no acompanhamento dos pastores);
- Condicionamento das áreas mais sensíveis ao turismo/controlo da sobrecarga e fiscalização dos percursos pedestres, especialmente na zona das Matas de Albergaria/Palheiros;

12. CONSIDERAÇÕES FINAIS

O estudo da ecologia de uma espécie constitui sempre, pela diversidade de factores implícitos, um trabalho ambicioso cujos objectivos só serão alcançados através de um esforço continuado e persistente. Com a duração de um ano, não pretendemos de modo algum apresentar grandes conclusões, neste trabalho, mas sim algumas considerações tecidas com base no que nos foi dado perceber.

Assim, o corço mostrou ser um animal com forte carácter solitário, florestal e territorial, que ocupa com preferência biótopos que lhe ofereçam alimento, abrigo e tranquilidade, condicionantes ao seu desenvolvimento.

O corço encontra-se espalhado um pouco por todo o Parque Nacional, evidenciando um incremento da densidade na parte central do mesmo. Pelo facto de estes resultados serem na globalidade concordantes com as potencialidades das áreas avaliadas como intermédias, pensamos que esta apreciação tenha sido razoavelmente bem aplicada.

A verificação de muitas considerações apresentadas ao longo deste trabalho, assim como um maior conhecimento da etologia da espécie só será possível com recurso à telemetria.

Tendo em vista a conservação e fomento da espécie no Parque Nacional é necessário assegurar a continuação ou implementar a aplicação das medidas de conservação, do habitat e da espécie, referidas neste trabalho.

13. BIBLIOGRAFIA

Aldous, S. E., 1944. A deer browse survey method. Journal of Mammalogy, 25 (2): 130-136 pp.

Albaret, M., 1987. Contribution a l'étude de la variabilité spatiale et temporelle du nombre de faons par femelle de chevreuil (Capreolus capreolus L.). Gibier Faune Sauvage, 4: 363-376 pp.

Bessa, J. P., 1972. O corço: um exemplar raro da fauna portuguesa. Gazeta Mobil, Série Parque Nacional da Peneda-Gerês, (182).

Bideau, E.; J.-P. Vincent, J.-P. quere \& J.-M., Angibault., 1983. Note sur l'evolution de l'association mère-jeune chez le chevreuil (Capreolus capreolus, L. 1758) étudiée par la technique du radiotracking. Mammalia, 47 (4): 477-482 pp.

Birkenstock, D. \& D. Maillard, 1989. Le régime alimentaire du Chevreuil (Capreolus capreolus) en forêt acidiphile de moyenne montagne déterminé par l'analyse des contenus stomacaux. B.M. O.N.C. (140): 29-34 pp.

Bobek, B., 1977. Summer food as the factor limiting roe deer population size. Nature, 268 (5615): 47-49 pp.

Boisaubert, B. \& J.-M. Boutin, 1988. Le chevreuil. Hatier, Paris: 236 pp.

Borges, J. M., 1981. Caracterização Ecológica da Herdade da Parra, Suas Potencialidades Cinegéticas. Relatório de Actividades do Curso de Engenhario Silvicultor, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa: 131 pp.

Boutin, J.-M., 1990. Le statut du Chevreuil (Capreolus capreolus) au Portugal et les recherches effectuées sur cette espèce. B.M. O.N.C., (143): 35-37 pp.

Burton, J. A., 1991. Field Guide to the Mammals of Britain \& Europe. Kingfisher Books, London: 192 pp.

Cabral, M. J.; M. E.Oliveira; C. Romão; H. M. Serôdio; A. Trindade; S. Borges \& C. P. Magalhães, 1987. Alguns Vertebrados do Parque Nacional da Peneda-Gerês. SNPRCA: 48 pp.

Carmo, P. L., 1986. Contribuição metodológica para a avaliação de potencialidades cinegéticas. Relatório de Estágio do Curso de Engenheiro Silvicultor, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa: 127 pp.

Carmo, P. L.; C. O. Romão \& A. M. Santos, 1986. Avaliação de potencialidades cinegéticas método HEP. I Congresso Florestal Nacional de 2 a 6 de Dezembro, Lisboa. Sociedade Portuguesa de Ciências Florestais: 302-306 pp.

Carmo, P.; M. J. Cabral \& J. Cruz, 1989. Distribuição do corço (Capreolus capreolus) no Parque Nacional da Peneda-Gerês. SNPRCN - Divisão de Conservação da Natureza: 12 pp .

Casanova, P. \& A. De Marinis, 1985. Il comportamento sociale del capriolo. Monti e Boschi (5): 1-8 pp.

Castro, L. P., 1992. Ecologia e Conservação do Lince-Ibérico na Serra da Malcata. Relatório de estágio para obtenção da Licenciatura em Recursos Faunísticos e Ambiente, Faculdade de Ciências de Lisboa da Universidade de Lisboa, Lisboa: 239 pp.

CEMAGREF, 1984. Foret et Gibier: Méthodes de recensement des populations de Chevreuils. Note technique. Ministère de l'Agriculture (51): 65 pp .

Chappius F., 1985. Compotement alimentaire du Chevreuil (Capreolus capreolus, L.) dans le Jura suisse (Canton de Neuchâtel et Canton de Vaud), déterminé au moyen de la télémétrie. XVIIth Congress of the International Union of Game Biologists, Brussels: 431-438 pp.

Chaplin, R. E., 1977. Deer. Blandford Mammal Series. Blandford Press, Poole: 218 pp.
Chapman, D. \& N. Chapman, 1975. Fallow deer - their history, distribution and biology. Terence Dalton Limited, Great Britain: 271 pp.

Cibien, C. \& D. Aine, 1990. Occupation de l'espace chez le chevreuil de plaine. B.M. O.N.C. (151): 23-26 pp.

Corbet, G. B. \& S. Harris, 1991. The Handbook of British Mammals. Blackwell Scientific Publications, $3^{\text {a }}$ Ed., London: 588 pp .

Costa, L. \& F. J. Purroy, 1991. Demographic aspects of a population of roe deer in the Cantabrian Mountains of northern Spain. Global trends in wildlife management. B. Bobek, K. Perzanowski \& W. Regelin Eds. Transactions of the 18th IUGB Congress, Krakow 1987. Swiat Press, Krakow-Warszawa: 551-554 pp.

Cumming; H. G., 1974. Fraying Behaviour and Management of Roe Deer. The Behavior of Ungulates and its Relation to Management. IUCN Publications New Series, Switzerland, 2 (24): 813-829 pp.

Delorme, D., 1989. L'effet observateur: une source de biais lors de l'application de l'indice kilométrique d'abondance (I.K.A.) pour le dénombrement de Chevreuils (Capreolus capreolus). Gibier Faune Sauvage, 6: 309-314 pp.

Delorme, D. \& J.-M. Gaillard, 1990. La qualité des sites de repos: une exigence du faon de Chevreuil vis-à-vis de son milieu. B.M. O.N.C. (143): 34 p.

Ferreira, A. M., 1991. Alguns aspectos da ecologia da raposa (Vulpes vulpes silacea Miller, 1907) no Parque Natural de Montesinho. Relatório de Estágio, Faculdade de Ciências da Universidade de Lisboa, Lisboa: 154 pp.

Ferreira, J. E. \& C. O. Romão, 1987. Avaliação de habitats para fauna. I Congresso Nacional de Áreas Protegidas, 15-17 de Dezembro, Lisboa.

Gaillard, J. M.; B. Boisaubert; J.-M. Boutin \& J. Clobert, 1985. Analyse préliminaire des taux de survie de deux populations françaises de Chevreuil. XVIIth Congress of the International Union of Game Biologist, Brussels: 261-268 pp.

Gama, M. M., 1957. Mamíferos de Portugal (Chaves para a sua determinação). Memórias e Estudos do Museu Zoológico da Universidade de Coimbra, 17 (246): 246 pp.

Gerreiro, A., 1980. Contribuição para o estudo das potencialidades e melhoramentos cinegéticos na região de Montalegre. Relatório de Estágio do Curso de Engenheiro Silvicultor, Instituto Superuor de Agronomia, Universidade Técnica de Lisboa, Lisboa: 87 pp.

Gomes, P. A.; 1989. Análise da estrutura trófica de uma comunidade de mamíferos. II Congresso de Áreas Protegidas, 4-8 de Dezembro, Liboa:197-209 pp.

Hullote, La, 1991. Ed. Passerage, Boult-aux-Bois: 48 pp.
Hoffmann, G., 1975. Méthodes de recensement des populations de Cerf (Cervus elphus) et Chevreuil (Capreolus capreolus). Bulletin de l'Office National de la Chasse, (2): 3-34 pp.

ICN, 1993. As Áreas Protegidas, Plano Estratégico para o Período 94-99. SEAC - Ministério do Ambiente e Recursos Naturais, Lisboa: 145 pp.

Jeppesen, J. L., 1984. Human disturbance of roe deer and red deer: preliminary results. Proceedings of the Scandinavian Symposium held in Rovaniemi and Saariselkä, Finland, September 1317, 1982, Helsinki: 113-118 pp.

Jeppesen, J. L., 1987. The Disturbing Effects of Orienteering and Hunting on Roe Deer (Capreolus capreolus). Danish Review of Game Biology, Denmark, 13 (3): 1-24 pp.

Léonard, Y.; J.-M. Cugnasse; J.-C. Gaudin \& D. Maillard, 1991. Méthodes de recensement et de suivi des populations de cervidés en région méditerranéenne française: bilan, perspectives. B.M. O.N.C., (163): 29-38 pp.

Klein, D. R. \& H. Strandgaard, 1972. Factors affecting growth and body size of roe deer. The Journal of Wildlife Manegement, United States of America, 36 (1): 64-79 pp.

Magalhães, C. P., 1975. Aspectos do lobo (Canis lupus signatus Cabrera, 1907) em Portugal. Act. XII Cong. UIGB, Lisboa

Magalhães, C. P. \& F. Petrucci-Fonseca, 1978. The Wolf in Bragança County - Impact on Cattle and Game. Proceedings of XIII IUGB Congress. Dublin.

Maillard, D. \& J. F. Picard, 1987. Le régime alimentaire automnal et hivernal du chevreuil (Capreolus capreolus), dans une hêtraie calcicole, déterminé par l'analyse des contenus stomacaux. Gibier Faune Sauvage, 4: 1-30 pp.

Maizeret, C.; J. M. Boutin \& A. Sempéré. 1986. Intérêt de la méthode micrographique d'analyse des fèces pour l'étude du régime alimentaire du chevreuil (Capreolus capreolus). Gibier Faune Sauvage, 3: 159-183 pp.

Martinho, A. M., 1990. Hábitos alimentares do corço (Capreolus capreolus) no carvalhal da Serra da Nogueira. Relatório Final de Estágio, Licenciatura em Engenharia Florestal, Universidade de Trás-os-Montes e Alto Douro, Vila Real: 58 pp .

Maublanc, M. L., 1989. Les activites techniques sur le chevreuil dans le Massif du CarouxEspinouse. Manuscrito: 5 pp.

Mauget, R. \& A. Sempéré, 1978. Comportement locomoteur déterminé par radiotracking chez deux ongulés sauvages en liberté: le chevreuil (Capreolus capreolus L.) et le sanglier (Sus scrofa L.). Biology of Behaviour, 3: 331-340 pp.

McPheat, W., 1990. Roe deer alarms. Deer: Journal of the British Deer Society, 8 (2): 102-103 pp.
Moreira, L. M., 1992. Contribuição para o estudo da ecologia do lobo (Canis lupus signatus Cabrera, 1907) no Parque Natural de Montesinho. Relatório de estágio para obtenção de licenciatira em Recursos Faunisticos e Ambiente, Faculdade de Ciências da Universidade de Lisboa, Lisboa: 175 pp.

Moreira, L. M.; L. P. Castro; J. P. Tavares; M. P. Abreu \& F. Petrucci-fonseca, 1989. Estudo dos hábitos alimentares da raposa (Vulpes vulpes silacea Miller, 1907) e da geneta (Genetta genetta Linnaeus, 1758) no Parque Natural de Montesinho. II Congresso de Áreas Protegidas, 4 a 8 de Dezembro, Lisboa: 435-444 pp.

Neves, C. B., 1952. Subsídios para o estudo da protecção da natureza no Gerês - Aspecto zoológico. Publicações da «Liga para a Protecção da Natureza», 8: 5-12 pp.

Nogueira, J. D., 1980. Contribuição para o estudo das potencialidades e melhoramentos cinegéticos da Serra da Estrela. Relatório Final do Curso de Engenheiro Silvicultor, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa: 106 pp.

Odum, E., 1971. Fundamentos da Ecologia.Fundação Calouste Gulbenkian (4 ${ }^{a}$ ed.): 927 pp.
Parker, T. J.; W. A. Haswell \& J. Nadal, 1987. Zoologia cordads. Ed. Reverté, S.A., 2: 981 pp.
Pereira, M., 1984. Elementos sobre Algumas Espécies cinegéticas do concelho de Bragança. Série Biologia e Ordenamento. Dir. Serv. Caça (2).

Pereira, M., 1985. Effects of Human and Wolf (Canis lupus) presence on a Roe Deer (Capreolus capreolus) Population in Northeastern Portugal (Serra da Nogueira). XVIIth Congress of the International Union of Game Biologists, Brussels, September 17-21, 1985: 671-678 pp.

Pereira, M. \& R. Moço, 1977. Contribuição para o estudo da biologia do corço Capreolus capreolus Lineu, 1758 na Serra de Nogueira. Relatório de estágio, Faculdade de Ciências da Universidade Clássica de Lisboa, Lisboa: 121 pp.

Pereira, M. \& R. Pereira, 1980. O corço (Capreolus capreolus L.) em Portugal. I Reunión Iberoamer. Zool. Vert., La Rábida 1977: 529-542 pp.

Petrucci-Fonseca, F., 1978. Canis lupus signatus Cabrera, 1907: Estudo do seu impacto na pecuária e na população de corços do nordeste transmontano. Relatório de estágio científico, Faculdade de Ciêncais da Universidade de Lisboa, Lisboa: 119 pp.

Petrucci-Fonseca, F., 1990. O lobo (Canis lupus signatus Cabrera, 1907) em Portugal. Problemática da sua conservação. Dissertação apresentada à Faculdade de Ciências da Universidade de Liboa para obtenção do grau de doutor, Lisboa: 392 pp.

Picard, J. F.; D. Maillard \& P. Oleffe, (s/ data). Comparaison du regime alimentaire de deux populations de chevreuils (Capreolus capreolus) au moyen de l'analyse des contenus stomacaux. Manuscrito: 12 pp .

Poutsma, J., 1987. Social preferences by roebucks when joining family groups in winter. Deer: Journal of the British Deer Society, 7 (2): 73-76 pp.

Prior, R., 1987. Roe Stalking. The Game Conservancy Ltd., Fordingbridge: 130 pp.
Putman, R., 1988. The Natural History of Deer. Christopher Helm, London: 191 pp.
Romão, C. O., 1985. Zona de caça condicionada da Lombada - caracterização e potencialidades cingéticas. Relatório de estágio do Curso de Engenheiro Silvicultor, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa:111 pp.

Serra, M. G. \& M. L. Carvalho, 1989. A Flora e a Vegetação do Parque Nacional da Peneda-Gerês - Contribuição para o Plano de Ordenamento desta Área Protegida. SNPRCN - Coleç̧ão Natureza e Paisgem, Lisboa (6): 78 pp.

Siuda, A.; W. Zurowski \& H. Siuda; 1969. The Food of the Roe Deer. Acta Theriologica, 14 (18): 247-262 pp.

SNPRCN, 1988. Carta de potencialidades do habitat para o veado (Cervus elaphus L.) na Reserva Natural da Serra da Malcata. Relatório interno.

SNPRCN, 1990. Cervídeos. Folheto de divulgação.

SNPRCN, 1991. Proposta de Plano de Ordenamento da Área de Ambiente Natural do Parque Nacional da Peneda-Gerês. $D O P / D S C N / P N P G: 48$ pp.

SNPRCN, 1993. Inventário e Caracterização do Património Natural do Parque Nacional da PenedaGerês. $D S C N / P N P G: 17 \mathrm{pp}$.

Staines, B. W., 1974. A review of factors affecting deer dispersion and their relevance to management. Mammal Rev., 4 (3): 79-91 pp.

Stelfox, J. G.; E. S. Telfer \& G. M. Linch, 1973. Effects of Logging on Wildlife. Fish and Game Sportsman Magazine: 1-4 pp.

Stocker, M. \& F. F. Gilbert, 1977. Vegetation and deer habitat relations in Southern Ontario: applications of habitat classification to white-tailed deer. J. appl. Ecol., 14:433-444 pp.

Strandgaard, H., 1972. The Roe Deer (Capreolus capreolus) Population at Kalo and the Factors Regulating its Size. Danish Review of Game Biology. Ed. Anders Holm Joensen, Denmark, 7 (1): 205 pp .

Swift, R. W., 1948. Deer select most nutritious forages. Journal of Wildlife Management, 12 (1): $109-110 \mathrm{pp}$.

Tavares, J. P.; M. P. Abreu; L. P. Castro; L. M. Moreira \& F. Petrucci-Fonseca, 1989. Estudo dos hábitos alimentares da Águia-Real (Aquila chrysaetos L.), do Bufo-Real (Bubo bubo L.) e da Coruja das Torres (Tyto alba Scop.) no Parque Natural de Montesinho. II Congresso de Áreas Protegidas, 4-8 de Dezembro, Lisboa: 425-434 pp.

Valla-Pinto, M., 1978. A raposa (Vulpes vulpes silacea Miller, 1907) no Parque Nacional da Peneda-Gerês e na Serra da Cabreira. Métodos de estudo. Impacto nas populações presa. Relatório de estágio cientifico, Faculdade de Ciências da Universidade de Lisboa, Lisboa: 180 pp .

Varin, E., 1979. Chevreuil, Cerf, Sanglier. Editions de l'Orés. Bordeaux: 254 pp.

Vincent, J. P. \& E. Bideau, 1992. Conseséquence d'une modification importante de la densité sur une population de chevreuils forestiers.B.M. O.N.C., (169): 30-33 pp.

Vincent, J. P.; E. Bideau \& J. F. Picard, 1986. Occupation de l'espace par le chevreuil forestier. R.F.F - Nature, loisirs et forêt, 38 (2): 157-164 pp.

Welch, D.; B. W. Staines; D. C. Catt \& D. Scott, 1990. Habitat usage by red (Cervus elaphus) and roe (Capreolus capreolus) deer in a Scottish Sitka spruce plantation. J. Zool., London, 221: 453-479 pp.

Whitehead, G. K., 1993. The Whitehead Encyclopedia of Deer. Swan Hill Press. United Kingdom: 597 pp.

Zejda, J. \& M. Homolka, 1980. Habitat selection and population density of field roe deer (Capreolus capreolus) outside the growing season. Folia Zoologica., 29 (2): 107-115 pp.

ANEXO I: Mapas de localização.

- Mapa da ocorrência do corço em Portugal pág. I-1
- Mapa do Parque Nacional da Peneda-Gerês pág. I-1
- Mapa com a localização de trilhos e pontos HSI pág. I-2

ANEXO II: Fotografias.

ANEXO III: Ritmo de actividade do corço.
ANEXO N: Marcações.

- Dados das marcações observadas
pág. IV-1
- Distância mínima da marcação ao solo
pág. IV-8
- Distância máxima da marcação ao solo
pág. IV-9
- Comprimento da marcação
pág. IV-10
- Diâmetro das espécies vegetais marcadas
pág. IV-11
- Repartição por géneros / espécies vegetais
pág. IV-12
- Sobrevivência dos géneros / espécies vegetais
pág. IV-13
- Marcações ao longo do trilho do Curral Velho
pág. IV-14
- Localização das principais áreas marcadas
pág. IV-15
ANEXO V : Observações de animais.
- Dados das observações pág. V-1
- Frequência das observações de grupos / estação do ano pág. V-5

ANEXO VI: Avaliação de potencialidades.

- Escala para avaliação de potencialidades
pág. VI-1
- Ficha de cálculo do modelo HSI para o corço
pág. VI-2
ANEXO VII: Estimativa de densidade.
- Animais observados e ouvidos na zona de Calvos e Palheiros pág. VII-1
- Animais observados nas áreas de Calvos e Palheiros
pág. VII-2
- Animais ouvidos nas áreas de Calvos e Palheiros
pág. VII-3

ANEXO VIII: Modelo das fichas de campo.

- Ficha de observação directa
pág. VIII-1
- Ficha de percurso
- Ficha de registo de marcações
- Ficha de inquérito
pág. VIII-3 pág. VIII-5
- Ficha de recolha de dados para o modelo HSI

ANEXO I: Mapas de localização.

Mapa da ocorrência do corço em Portugal (in Pereira \& Pereira, 1980)

Bases para a conservação e gestão do corço (Capreolus capreolus) no Parque Nacional da Peneda-Gerês

Mapa com a localização de trilhos e pontos HSI (Escala : 1/25.000)

Legenda :

I Trilho de Calvos
II Trilho de Palheiros
III Trilho do Curral Velho
1-10 Pontos de amostragem - Modelo HSI

ANEXO II: Fotografias.

Serra da Peneda (fotografia de Paulo Carmo)

Mata do Ramiscal

Matas de Albergaria / Palheiros

Matas de Albergaria / Palheiros (fotografia de Paulo Carmo)

Mata do Cabril

Planalto da Mourela

Vale do Rio Mau

Trilho de corço

Cama de corço

Arbutus unedo consumido por corço

Marcação de corço em Q. pyrenaica

Pyrus sp. marcada por corço

ANEXO III: Ritmo de actividade do corço.

ANEXO N: Marcações.

	Código da Planta	Espécie vegetal	$\begin{gathered} \text { Ano } \\ \text { da } \\ \text { Marcação } \\ \hline \end{gathered}$	Distância Mínima (cm)	Distância Máxima (cm)	Comprimento (cm)	Diâmetro (mm)	Sobreposição	$\begin{gathered} \text { Estado } \\ \text { da } \\ \text { Planta } \\ \hline \end{gathered}$
80	16	Quercus pyrenaica	94	39.0	86.0	47.0	11.1		1
81	14	Pyrus sp.	94	32.0	52.0	20.0	6.4		2
82	17	Quercus robur	94	33.0	56.0	23.0	9.5		2
83	17	Quercus robur	94	29.0	49.0	20.0	8.0		2
84	20	Salix sp.	94	33.0	73.0	40.0	9.5		2
30	14	Pyrus sp.	88	53.0		64.0	35.0		4
78	14	Pyrus sp.	89	72.0		35.0	38.2	30	4
85	7	Erica sp.	94	42.0	72.0	30.0	12.7		1
86	7	Erica sp.	94	30.0	64.0	34.0	8.0		1
1	16	Quercus pyrenaica	94	21.0	58.5	37.5	14.3		1
79	14	Pyrus sp.	89	50.0		20.0	22.3		1
13	12	Pinus sylvestris	88	50.0			20.1		1
87	7	Erica sp.	94	31.0	48.0	17.0	8.0		1
2	6	Cytisus sp.	94	32.0	7.5	38.5	13.7		4
88	6	Cytisus sp.	94	48.0	78.0	30.0	12.7		1
88	6	Cytisus sp.	94	44.0	53.0	9.0	8.0		1
88	6	Cytisus sp.	94	49.0	64.0	15.0	9.5		1
88	6	Cytisus sp.	94	50.0	60.0	10.0	9.5		1
89	7	Erica sp.	94	34.0	64.0	30.0	9.5		1
141	14	Pyrus sp.	90	20.0		55.0	12.7		2
3	2	Arbutus unedo	94	78.5	100.0	21.5	13.4		1
4	8	Frangula alnus	94	40.0	72.5	32.5	11.8	A	1
5	12	Pinus sylvestris	94	19.0	78.0	59.0	26.4	A	4
6	12	Pinus sylvestris	94	38.0	76.5	38.5	31.8		1
90	16	Quercus pyrenaica	94	46.0	66.0	20.0	15.9		1
91	6	Cytisus sp.	94	43.0	60.0	37.0	9.5		1
15	14	Pyrus sp.	88	35.0		60.0	35.0		1
83	14	Pyrus sp.	89	20.0		45.0	15.9		1
83	14	Pyrus sp.	89	35.0		55.0	31.8		1
158	14	Pyrus sp.	90	20.0		75.0	15.9	83	1
7	14	Pyrus sp.	94	36.0	47.0	11.0	7.0	83	1
92	7	Erica sp.	94	26.0	93.0	80.0	28.6		1
84	14	Pyrus sp.	89	60.0		35.0	12.7		4
93	6	Cytisus sp.	94	28.0	60.0	32.0	12.7		1
8	8	Frangula alnus	94	31.0	76.5	45.5	12.1		4
8	8	Frangula alnus	94	53.0	90.0	37.0	6.4		4
19	8	Frangula alnus	94	13.0	86.0	73.0	21.0		1
94	8	Frangula alnus	94	29.0	64.0	35.0	14.3		1
16	6	Cytisus sp.	88	50.0		60.0	25.1		4
85	6	Cytisus sp.	89	40.0		70.0	31.8	16	4
85	6	Cytisus sp.	89	65.0		40.0	12.7	16	4
85	6	Cytisus sp.	89	60.0		40.0	22.3	16	4
85	6	Cytisus sp.	89	80.0		35.0	12.7	16	4
95	6	Cytisus sp.	94	44.0	85.0	41.0	14.3		2
96	7	Erica sp.	94	41.0	68.0	27.0	9.5		1
17	2	Arbutus unedo	88	70.0		80.0	27.4		3
121	2	Arbutus unedo	89	45.0		90.0	28.6	17	3
9	16	Quercus pyrenaica	94	53.0	79.0	26.0	11.1		4
86	7	Erica sp.	89	80.0		55.0	25.5		1
10	8	Frangula alnus	94	31.0	79.0	48.0	11.8		1
10	8	Frangula alnus	94	31.0	79.0	48.0	12.7		1

	$\begin{aligned} & \text { Código } \\ & \text { da } \\ & \text { Planta } \end{aligned}$	Espécie vegetal			Distância Máxima (cm)	Comprimento (cm)	Diâmetro (mm)	Sobre- posição	Estado da Planta
20	8	Frangula alnus	94	34.0	80.0	46.0	12.1		2
123	12	Pinus sylvestris	89	25.0		45.0	15.9		4
13	6	Cytisus sp.	94	35.0	78.0	43.0	13.4		1
21	6	Cytisus sp.	94	41.0	81.5	40.5	10.5		2
11	6	Cytisus sp.	94	39.0	70.0	31.0	11.8		1
12	12	Pinus sylvestris	94	41.0	85.0	44.0	132.1		1
32	6	Cytisus sp.	88	41.0		67.0	33.4		4
87	6	Cytisus sp.	89	80.0		30.0	31.8	32	4
14	6	Cytisus sp.	94	49.0	94.5	45.5	10.5		2
145	12	Pinus sylvestris	90	50.0		85.0			4
88	7	Erica sp.	89	60.0		20.0	9.5		3
15	6	Cytisus sp.	94	51.0	87.0	36.0	14.3		1
7	8	Frangula alnus	87	40.0		90.0	17.5		1
16	6	Cytisus sp.	94	17.0	55.0	38.0	12.1		1
17	8	Frangula alnus	94	16.0	64.0	48.0	12.7		1
19	12	Pinus sylvestris	88	20.0		60.0	27.4		4
95	12	Pinus sylvestris	89	75.0		65.0	15.9	19	4
97	6	Cytisus sp.	94	32.0	62.0	30.0	11.1		4
115	6	Cytisus sp.	89	45.0	70.0	25.0	12.7		4
18	17	Quercus robur	94	26.0	47.0	21.0	9.5		3
22	10	Pinus pinaster	94	57.0	88.0	31.0	117.8		1
22	10	Pinus pinaster	94	12.0	31.0	19.0	10.2		2
98	6	Cytisus sp.	94	61.0	72.0	11.0	9.5		2
23	16	Quercus pyrenaica	94	53.0	91.0	38.0	8.0		2
99	12	Pinus sylvestris	94	14.0	23.0	9.0	12.7		1
99	6	Cytisus sp.	94	33.0	53.0	20.0	6.4		1
24	6	Cytisus sp.	94	48.0	70.0	22.0	11.1		1
25	6	Cytisus sp.	94	35.0	63.0	28.0	11.1		1
26	6	Cytisus multiflorus	94	17.0	72.0	55.0	7.0		2
27	16	Quercus pyrenaica	94	16.0	56.0	40.0	16.9		1
100	6	Cytisus sp.	94	19.0	65.0	46.0	9.5		4
36	14	Pyrus sp.	88	46.0		60.0	4.8		1
8	8	Frangula alnus	87	17.0		52.0	19.1		1
28	6	Cytisus scoparius	94	28.0	64.0	36.0	13.4		1
101	14	Pyrus sp.	89	60.0		30.0	9.5		4
102	14	Pyrus sp.	89	60.0		30.0	12.7		1
102	14	Pyrus sp.	89	65.0		20.0	12.7		1
102	18	Quercus sp.	89	75.0		30.0	28.6		1
162	17	Quercus robur	90	25.0		55.0	22.3		1
37	12	Pinus sylvestris	88	23.0		56.0	31.8		1
103	8	Frangula alnus	89	60.0		27.0	22.3		1
9	6	Cytisus sp.	87	40.0		61.0	4.8		1
20	7	Erica sp.	88	40.0		60.0	17.5		1
151	7	Erica arborea.	90	35.0		60.0	9.5		1
101	10	Pinus pinaster	94	33.0	56.0	27.0	23.9		1
117	10	Pinus pinaster	89	30.0		70.0	19.1		1
21	10	Pinus pinaster	88	25.0		55.0	12.7		1
10	10	Pinus pinaster	87	15.0		47.0	27.1		1
152	10	Pinus pinaster	90	40.0		75.0	31.8	10	1
102	10	Pinus pinaster	94	25.0	53.0	28.0	12.7		4
153	18	Quercus robur.	90	20.0		60.0	31.8		1

	$\begin{gathered} \text { Código } \\ \text { da } \\ \text { Planta } \\ \hline \end{gathered}$	Espécie vegetal		Distância Minima (cm)	Distância Máxima (cm)	Comprimento (cm)	Diâmetro (mm)	Sobre- posição	$\begin{gathered} \text { Estado } \\ \text { da } \\ \text { Planta } \end{gathered}$
104	10	Pinus pinaster	89	65.0		25.0	15.9		4
38	8	Frangula alnus	88	29.0		46.0	4.8		1
22	19	Taxus baccata	88	30.0		50.0	20.1		2
105	6	Cytisus sp.	89	10.0		50.0	44.6		1
106	14	Pyrus sp.	89	22.0		50.0	25.5		1
163	14	Pyrus sp.	90	25.0		65.0	9.5		1
23	7	Erica sp.	88	15.0		40.0	15.0		1
165	8	Frangula alnus	90	30.0		70.0	12.7		1
103	14	Pyrus sp.	94	37.0	68.0	31.0	9.5		4
108	18	Quercus robur.	89	10.0		55.0	12.7		2
108	8	Frangula alnus	89	75.0		20.0	12.7		2
156	8	Frangula alnus	90	30.0		50.0	25.5		4
29	17	Quercus robur	94	29.0	50.0	21.0	31.8		1
104	10	Pinus pinaster	94	24.0	63.0	41.0	20.7		1
109	10	Pinus pinaster	89	73.0		52.0	15.9		2
30	10	Pinus pinaster	94	49.0	66.0	17.0	11.1	109	1
129	10	Pinus pinaster	90	70.0		15.0	15.9		4
105	8	Frangula alnus	94	45.0	81.0	36.0	11.1		2
31	6	Cytisus sp.	94	39.0	62.0	23.0	11.5		2
31	6	Cytisus sp.	94	72.0	78.0	6.0	11.5		2
32	8	Frangula alnus	94	24.0	59.0	35.0	19.7	A	1
33	6	Cytisus sp.	94	15.0	91.0	76.0	12.7		4
34	8	Frangula alnus	94	17.0	71.0	54.0	15.9		2
106	7	Erica sp.	94	31.0	62.0	31.0	12.7		1
35	10	Pinus pinaster	94	18.0	52.0	34.0	9.5		4
36	6	Cytisus sp.	94	13.0	53.0	20.0	12.7		1
107	7	Erica sp.	94	32.0	60.0	28.0	15.9		1
37	9	Ilex aquifolium	94	8.0	40.0	32.0	9.5		2
108	7	Erica sp.	94	40.0	70.0	30.0	15.9		1
38	6	Cytisus sp.	94	55.0	85.0	30.0	12.7		1
109	6	Cytisus sp.	94	37.0	79.0	52.0	14.3		4
130	9	Ilex aquifolium	90	5.0		35.0	12.7		1
39	2	Arbutus unedo	94	36.0	101.0	65.0	54.1	A	1
54	9	Ilex aquifolium	89	10.0		28.0	19.1		1
54	9	Ilex aquifolium	89	10.0	65.0	55.0	25.5		1
110	7	Erica sp.	94	66.0	90.0	24.0	11.1		1
40	2	Arbutus unedo	94	57.0	96.0	39.0	11.1		1
111	2	Arbutus unedo	94	26.0	62.0	36.0	19.1	40	1
112	10	Pinus pinaster	94	16.0	78.0	65.0	12.7		4
113	7	Erica sp.	94	62.0	94.0	32.0	12.7		1
113	10	Pinus pinaster	94	10.0	34.0	24.0	8.0		1
41	14	Pyrus sp.	94	19.0	49.0	30.0	8.0		4
114	5	Chamaespertium trident	94	44.0	64.0	34.0	11.1		1
115	7	Erica sp.	94	49.0	78.0	29.0	9.5		1
116	8	Frangula alnus	94	32.0	61.0	29.0	22.3		1
42	6	Cytisus sp.	94	43.0	65.0	22.0	17.5		1
42	6	Cytisus sp.	94	33.0	64.0	31.0	8.9		1
57	6	Cytisus sp.	89	15.0		56.0	12.7		1
58	6	Cytisus sp.	89	20.0		70.0	9.5		1
117	7	Erica sp.	94	42.0	90.0	48.0	9.5		1
60	9	llex aquifolium	89	50.0		70.0	9.5		2

	$\begin{array}{\|c} \hline \text { Código } \\ \text { da } \\ \text { Planta } \end{array}$	Espécie vegetal	Ano da Marcação	Distância Mínima (cm)	Distância Máxima (cm)	Comprimento (cm)	Diâmetro (mm)	Sobreposição	$\begin{gathered} \text { Estado } \\ \text { da } \\ \text { Planta } \end{gathered}$
43	2	Arbutus unedo	94	29.0	55.0	26.0	8.6		1
118	14	Pyrus sp.	94	33.0	70.0	37.0	14.3		1
44	17	Quercus robur	94	29.0	66.0	37.0	15.9		1
40	10	Pinus pinaster	88	40.0		75.0			1
110	6	Cytisus sp.	89	50.0		80.0	15.9		4
53	2	Arbutus unedo	94	21.0	81.0	60.0	9.5		2
64	7	Erica sp.	89	60.0		35.0	12.7		1
64	7	Erica sp.	89	50.0		30.0	9.5		1
66	2	Arbutus unedo	89	75.0		50.0	12.7		1
41	8	Frangula alnus	88	41.0		78.0			4
119	12	Pinus sylvestris	94						1
24	12	Pinus sylvestris	88	38.0		90.0	19.1		4
68	8	Frangula alnus	89	70.0		15.0	15.9		4
54	14	Pyrus sp.	94	21.0	59.0	38.0	15.9		1
54	14	Pyrus sp.	94	33.0	63.0	30.0	20.7		1
136	6	Cytisus sp.	90	20.0		60.0	9.5		4
120	14	Pyrus sp.	94	28.0	59.0	32.0	11.1		1
121	14	Pyrus sp.	94	15.0	56.0	41.0	9.5		1
55	7	Erica sp.	94	34.0	66.0	32.0	11.1		1
55	2	Arbutus unedo	94	50.0	70.0	20.0	12.7		1
70	9	Ilex aquifolium	89	20.0		40.0	15.9		1
122	6	Cytisus sp.	94	34.0	58.0	24.0	22.3		1
127	7	Erica sp.	89	60.0		85.0	9.5		2
56	14	Pyrus sp.	94	16.0	47.0	31.0	15.9		1
123	14	Pyrus sp.	94	26.0	62.0	36.0	12.7	A	1
57	6	Cytisus sp.	94	18.0	60.0	42.0	9.5		4
124	9	llex aquifolium	94	19.0	52.0	43.0	9.5		1
58	6	Cytisus sp.	94	26.0	54.0	28.0	8.0		1
59	8	Frangula alnus	94	28.0	55.0	27.0	9.5		1
60	8	Frangula alnus	94	8.0	36.0	26.0	12.7		1
125	8	Frangula alnus	94	15.0	58.0	43.0	8.0		1
126	8	Frangula alnus	94	15.0	43.0	28.0	8.0		1
52	18	Quercus robur.	94	30.0	70.0	40.0	28.6		1
127	10	Pinus pinaster	94	30.0	66.0	36.0	33.4		1
51	2	Arbutus unedo	94	15.0	60.0	45.0	11.1		1
51	2	Arbutus unedo	94	16.0	54.0	38.0	12.7		1
128	1	Acer pseudoplatanus	94	49.0	60.0	11.0	11.1		4
50	10	Pinus pinaster	94	10.0	44.0	14.0	9.5		4
50	2	Frangula alnus	94	18.0	47.0	29.0	15.9		4
128	6	Cytisus sp.	89	30.0		75.0	15.9		1
49	13	Prunus lusitanicus	94	22.0	34.0	12.0	25.5		1
129	6	Cytisus sp.	94	26.0	62.0	36.0	15.9		4
48	6	Cytisus sp.	94	10.0	33.0	23.0	28.6		4
112	14	Pyrus sp.	89	20.0		45.0	15.9		1
28	6	Cytisus sp.	88	20.0		50.0	9.9		4
75	2	Arbutus unedo	89	55.0		30.0	12.7		1
138	2	Arbutus unedo	90	70.0		95.0	25.5		1
47	2	Arbutus unedo	94	49.0	100.0	51.0	12.7	138	1
113	14	Pyrus sp.	89	20.0		50.0	15.9		1
46	14	Pyrus sp.	94	24.0	50.0	26.0	15.9	113	1
45	13	Prunus lusitanicus	94	30.0	60.0	30.0	12.7		1

	$\begin{aligned} & \text { Código } \\ & \text { da } \\ & \text { Planta } \end{aligned}$	Espécie vegetal		Distância Mínima (cm)	Distância Máxima (cm)	Comprimento (cm)	Diâmetro (mm)	Sobreposição	$\begin{gathered} \hline \text { Estado } \\ \text { da } \\ \text { Planta } \end{gathered}$
45	13	Prunus /usitanicus	94	27.0	51.0	24.0	27.1		1
45	13	Prunus lusitanicus	94	19.0	56.0	37.0	19.1		1
45	13	Prunus /usitanicus	94	40.0	63.0	23.0	63.7		1
45	13	Prunus lusitanicus	94	26.0	60.0	34.0	25.5		1
45	13	Prunus lusitanicus	94	35.0	66.0	31.0	25.5		1
52	6	Cytisus sp.	94	30.0	70.0	40.0	28.6		1
61	14	Pyrus sp.	94	21.0	47.0	26.0	15.3		1
62	14	Pyrus sp.	94	20.0	38.0	18.0	14.3		1
63	8	Frangula alnus	94	48.0	79.0	31.0	18.1		1
64	8	Frangula alnus	94	49.0	81.0	32.0	13.4		1
65	8	Frangula alnus	94	57.0	100.0	43.0	15.0		1
66	8	Frangula alnus	94	44.0	75.0	31.0	9.5		4
67	8	Frangula alnus	94	30.0	69.0	39.0	19.1		1
68	8	Frangula alnus	94	24.0	62.0	38.0	9.5		4
69	6	Cytisus sp.	94	44.0	85.0	41.0	12.7		1
70	6	Cytisus sp.	94	40.0	92.0	52.0	9.5		4
70	6	Cytisus sp.	94	26.0	71.0	45.0	12.7		4
70	6	Cytisus sp.	94	25.0	51.0	26.0	7.3		1
71	8	Frangula alnus	94	10.0	69.0	59.0	12.7		1
71	8	Frangula alnus	94	30.0	47.0	17.0	17.5		4
72	8	Frangula alnus	94	23.0	74.0	51.0	23.9		1
134	8	Frangula alnus	94	37.0	64.0	27.0	11.1		1
135	8	Frangula alnus	94	26.0	51.0	25.0	25.5		1
136	8	Frangula alnus	94	50.0	77.0	38.0	12.7		1
137	8	Frangula alnus	94	40.0	77.0	37.0	12.7		4
138	8	Frangula alnus	94	41.0	74.0	93.0	30.2		1
139	8	Frangula alnus	94	60.0	75.0	17.0	9.5		1
140	8	Frangula alnus	94	25.0	81.0	56.0	17.5		2
141	15	Quercus rubra	94	34.0	57.0	23.0	25.5		1
142	8	Frangula alnus	94	38.0	67.0	29.0	28.6	A	1
143	8	Frangula alnus	94	38.0	56.0	18.0	12.7		1
	8	Frangula alnus	94	25.0	75.0	50.0	12.7		4
73	14	Pyrus sp.	94	15.0	49.0	34.0	8.0		1
74	14	Pyrus sp.	94	15.0	41.0	26.0	14.3		1
75	14	Pyrus sp.	94	21.0	46.0	25.0	15.9		1
76	14	Pyrus sp.	94	11.0	59.0	48.0	12.7		1
77	3	Betula pubescens	94	43.0	70.0	33.0	9.5		4
78	6	Cytisus sp.	94	49.0	85.0	36.0	11.1		1
78	6	Cytisus sp.	94	30.0	63.0	33.0	8.0		1
78	6	Cytisus sp.	94	70.0	78.0	20.0	14.3		1
78	6	Cytisus sp.	94	38.0	76.0	38.0	9.5		1
79	6	Cytisus sp.	94	42.0	65.0	45.0	15.9		1
130	14	Pyrus sp.	94	17.0	46.0	32.0	15.9		1
131	10	Pinus pinaster	94	80.0	82.0	15.0	11.1		1
132	8	Frangula alnus	94	20.0	76.0	46.0	11.1		4
133	8	Frangula alnus	94	30.0	66.0	36.0	17.5		1
	9	llex aquifolium	89	10.0		55.0	25.5		
56	6	Cytisus sp.	89	15.0		75.0	12.7		
59	6	Cytisus sp.	89	45.0		10.0	9.5		
59	6	Cytisus sp.	89	70.0		30.0	15.9		
61	9	Ilex aquifolium	89	10.0		30.0	9.5		

	$\begin{array}{\|c\|} \hline \text { Código } \\ \text { da } \\ \text { Planta } \\ \hline \end{array}$	Espécie vegetal		Distância Mínima (cm)	Distância Máxima (cm)	Comprimento (cm)	Diâmetro (mm)	Sobreposição	$\begin{gathered} \hline \text { Estado } \\ \text { da } \\ \text { Planta } \\ \hline \end{gathered}$
62	10	Pinus pinaster	89	85.0			12.7		
63	6	Cytisus sp.	89	80.0		30.0	12.7		
65	7	Erica sp.	89	80.0		15.0	31.8		
67	11	Pinus sp.	89	65.0		40.0	25.5	24	
69	6	Cytisus sp.	89	75.0		40.0	12.7		
70	11	Pinus sp.	89	90.0		80.0	31.8		
70	11	Pinus sp.	89	75.0		50.0	25.5		
70	10	Pinus pinaster	89	80.0		20.0	15.9		
70	10	Pinus pinaster	89	50.0		20.0	15.9		
70	10	Pinus pinaster	89	70.0		40.0	31.8		
71	14	Pyrus sp.	89	65.0		30.0	12.7		
72	6	Cytisus sp.	89	60.0		20.0	25.5		
73	14	Pyrus sp.	89	60.0		15.0	12.7		
74	6	Cytisus sp.	89	70.0		40.0	12.7		
76	6	Cytisus sp.	89	50.0		15.0	22.3		
77	6	Cytisus sp.	89	85.0		40.0	28.6		
	14	Pyrus sp.	89	25.0		50.0	9.5		
111	6	Cytisus sp.	89	30.0		50.0	19.1		
126	8	Frangula alnus	89	30.0		70.0	12.7		
98	12	Pinus sylvestris	89	80.0		65.0	15.9		
98	12	Pinus sylvestris	89	50.0			12.7		
99	12	Pinus sylvestris	89	40.0		10.0	9.5		
99	12	Pinus sylvestris	89	60.0		40.0	12.7		
99	12	Pinus sylvestris	89	70.0		60.0	15.9		
99	12	Pinus sylvestris	89	50.0		20.0	9.5		
100	11	Pinus sp.	89	64.0			22.3		
107	14	Pyrus sp.	89	75.0		25.0	31.8		
81	12	Pinus sylvestris	89	35.0		15.0	12.7		
80	12	Pinus sylvestris	89	85.0		70.0	19.1		
80	12	Pinus sylvestris	89	50.0		20.0	12.7		
82	12	Pinus sylvestris	89	73.0			9.5		
87	6	Cytisus sp.	89	80.0		30.0	31.8	32	
89	6	Cytisus sp.	89	40.0		30.0	9.5		
90	6	Cytisus sp.	89	70.0			9.5		
90	8	Frangula alnus	89	50.0		20.0	9.5		
91	6	Cytisus sp.	89	60.0		25.0	31.8		
92	14	Pyrus sp.	89	45.0		15.0	15.9		
92	12	Pinus sylvestris	89	40.0		20.0	9.5		
93	6	Cytisus sp.	89	75.0		30.0	31.8		
94	14	Pyrus sp.	89	60.0		25.0	12.7		
96	18	Quercus sp.	89	50.0		20.0	38.2		
96	18	Quercus sp.	89	65.0		20.0	31.8		
	6	Cytisus sp.	89	40.0		23.0	38.2		
	6	Cytisus sp.	89	50.0		25.0	31.8		
	12	Pinus sylvestris	89	75.0		15.0	12.7		
97	18	Quercus sp.	89	70.0		35.0	44.6		
97	6	Cytisus sp.	89	75.0		40.0	9.5		
97	18	Quercus sp.	89	50.0		22.0	9.5		
97	6	Cytisus sp.	89	65.0		40.0	15.9		
97	6	Cytisus sp.	89	50.0		10.0	15.9		
114	6	Cytisus sp.	89	42.0		72.0	9.5		

	$\begin{array}{\|c} \hline \text { Código } \\ \text { da } \\ \text { Planta } \\ \hline \end{array}$	Espécie vegetal	Ano da Marcaçăo	Distância Mínima (cm)	Distância Máxima (cm)	Comprimento (cm)	Diâmetro (mm)	Sobreposição	$\begin{gathered} \hline \text { Estado } \\ \text { da } \\ \text { Planta } \\ \hline \end{gathered}$
116	10	Pinus pinaster	89	48.0		70.0	25.5		
117	10	Pinus pinaster	89	30.0		70.0	19.1		
118	4	Chamaecyparis sp.	89	20.0		66.0	12.7		
119	14	Pyrus sp.	89	51.0		62.0	15.9		
120	12	Pinus sy/vestris	89	25.0		58.0	15.9		
122	6	Cytisus sp.	89	55.0		70.0	12.7		
	6	Cytisus sp.	89	50.0		65.0	28.6		
124	14	Pyrus sp.	89	40.0		50.0	12.7		
125	10	Pinus pinaster	89	34.0		63.0	25.5		
131	6	Cytisus sp.	90	50.0		75.0	12.7		
132	6	Cytisus sp.	90	30.0		75.0	12.7		
133	8	Frangula alnus	90	5.0		60.0	12.7		
134	12	Pinus sylvestris	90	35.0		85.0	31.8		
135	14	Pyrus sp.	90	42.0		75.0	19.1		
137	6	Cytisus sp.	90	30.0		80.0	12.7		
139	4	Chamaecyparis	90	15.0		50.0	31.8		
140	14	Pyrus sp.	90	5.0		30.0		79	
142	12	Pinus sy/vestris	90	50.0		65.0	28.6		
143	12	Pinus sylvestris	90	55.0		35.0			
144	12	Pinus sylvestris	90	55.0		30.0			
147	12	Pinus sylvestris	90	30.0		55.0	9.5		
148	6	Cytisus sp.	90	4.0		60.0	12.7		
149	6	Cytisus sp.	90	55.0		80.0	15.9		
150	6	Cytisus sp.	90	55.0		80.0	22.3		
154	7	Erica sp.	90	25.0		75.0	28.6		
155	18	Quercus sp.	90	35.0		70.0	22.3		
160	6	Cytisus sp.	90	50.0		75.0	19.1		
161	12	Pinus sylvestris	90	50.0		70.0	9.5		
163	14	Pyrus sp.	90	25.0		65.0	9.5		
164	14	Pyrus sp.	90	15.0		40.0	12.7		

Dimensão das amostras :	335	171	329	329	18	250

N° de plantas com número atríbuido: 329
N° de plantas medidas: 336

Análise das marcações observadas
Distância mínima da marcação ao solo

| Indicador | Estatistico | Descrição |
| :--- | :--- | ---: | | Valor |
| :--- |
| (cm) |$|$| MIN | Altura mínima |
| :--- | ---: |
| AVERAGE | Altura média |
| MAX | Altura máxima |
| MEDIAN | Mediana |
| MODE | Moda |
| STDEV | Desvio padrão |

Intervalo		2.5	Intervalo		2.5
altura (cm)	Freq	\%	altura (cm)	Freq	\%
2.5			50.0	37	11.04\%
5.0	4	1.19\%	52.5	2	0.60\%
7.5			55.0	11	3.28\%
10.0	12	3.58\%	57.5	3	0.90\%
12.5	2	0.60\%	60.0	14	4.18\%
15.0	16	4.78\%	62.5	2	0.60\%
17.5	10	2.99\%	65.0	8	2.39\%
20.0	22	6.57\%	67.5	1	0.30\%
22.5	7	2.09\%	70.0	11	3.28\%
25.0	18	5.37\%	72.5	2	0.60\%
27.5	10	2.99\%	75.0	12	3.58\%
30.0	30	8.96\%	77.5		
32.5	10	2.99\%	80.0	10	2.99\%
35.0	22	6.57\%	82.5		
37.5	5	1.49\%	85.0	3	0.90\%
40.0	24	7.16\%	87.5		
42.5	11	3.28\%	90.0	1	0.30\%
45.0	13	3.88\%	92.5		
47.5	2	0.60\%	95.0		

Nota: O gráfico abaixo illustra 100\% das observações

Frequência das observações

Análise das marcações observadas

Distância máxima da marcação ao solo

Indicador Estatistico	Descrição	$\begin{aligned} & \text { Valor } \\ & (\mathrm{cm}) \end{aligned}$
MIN	Altura mínima	7.5
AVERAGE	Altura média	65.7
MAX	Altura máxima	101.0
MEDIAN	Mediana	64.0
MODE	Moda	64.0
STDEV	Desvio padrão	15.8

Intervalo		2.5	Intervalo		2.5
altura (cm)	Freq	\%	altura (cm)	Freq	\%
20.0			67.5	8	4.68\%
22.5			70.0	13	7.60\%
25.0	1	0.58\%	72.5	6	3.51\%
27.5			75.0	6	3.51\%
30.0			77.5	6	3.51\%
32.5	1	0.58\%	80.0	13	7.60\%
35.0	3	1.75\%	82.5	6	3.51\%
37.5	1	0.58\%	85.0	5	2.92\%
40.0	2	1.17\%	87.5	3	1.75\%
42.5	1	0.58\%	90.0	4	2.34\%
45.0	2	1.17\%	92.5	3	1.75\%
47.5	8	4.68\%	95.0	3	1.75\%
50.0	6	3.51\%	97.5	1	0.58\%
52.5	6	3.51\%	100.0	3	1.75\%
55.0	9	5.26\%	102.5	1	0.58\%
57.5	7	4.09\%	105.0		
60.0	16	9.36\%	107.5		
62.5	8	4.68\%	110.0		
65.0	18	10.53\%	112.5		

Nota : O gráfico abaixo ilustra 99.42% das observações

Frequência das observações

Análise das marcações observadas

Comprimento da marcação

Indicador	Descrição	Valor (cm)
Estatistico	Comprimento mínimo	6.0
AVERAGE	Comprimento médio	41.0
MAX	Comprimento máximo	95.0
MEDIAN	Mediana	37.0
MODE	Moda	30.0
STDEV	Desvio padrão	19.3

Intervalo		2.5	Intervalo		2.5
altura (cm)	Freq	\%	altura (cm)	Freq	\%
5.0			52.5	6	1.82\%
7.5	1	0.30\%	55.0	11	3.34\%
10.0	6	1.82\%	57.5	3	0.91\%
12.5	4	1.22\%	60.0	15	4.56\%
15.0	11	3.34\%	62.5	2	0.61\%
17.5	4	1.22\%	65.0	10	3.04\%
20.0	23	6.99\%	67.5	2	0.61\%
22.5	6	1.82\%	70.0	12	3.65\%
25.0	18	5.47\%	72.5	1	0.30\%
27.5	12	3.65\%	75.0	11	3.34\%
30.0	34	10.33\%	77.5	1	0.30\%
32.5	17	5.17\%	80.0	8	2.43\%
35.0	16	4.86\%	82.5		
37.5	16	4.86\%	85.0	3	0.91\%
40.0	28	8.51\%	87.5		
42.5	6	1.82\%	90.0	3	0.91\%
45.0	11	3.34\%	92.5		
47.5	8	2.43\%	95.0	2	0.61\%
50.0	18	5.47\%	97.5		

Nota: O gráfico abaixo ilustra 100% das observações

Frequência das observações

Comprimento da marcação (em cm)

Análise das marcações observadas

Diâmetro das espécies vegetais marcadas

Indicador	Descrição	Valor (mm)
Estatistico	DIN	Diâmetro mínimo
AVERAGE	Diâmetro médio	4.8
MAX	Diámetro máximo	17.2
MEDIAN	Mediana	132.1
MODE	Moda	12.7
STDEV	Desvio padrão	12.7

Intervalo		2	Intervalo		2
Diâm (mm)	Freq	\%	Diâm (mm)	Freq	\%
5.0	3	0.91\%	43.0		
7.0	3	0.91\%	45.0	2	0.61\%
9.0	17	5.17\%	47.0		
11.0	56	17.02\%	49.0		
13.0	92	27.96\%	51.0		
15.0	16	4.86\%	53.0		
17.0	39	11.85\%	55.0	1	0.30\%
19.0	7	2.13\%	57.0		
21.0	17	5.17\%	59.0		
23.0	11	3.34\%	61.0		
25.0	2	0.61\%	63.0		
27.0	18	5.47\%	65.0	1	0.30\%
29.0	15	4.56\%	67.0		
31.0	1	0.30\%	69.0		
33.0	19	5.78\%	71.0		
35.0	2	0.61\%	73.0		
37.0	2	0.61\%	75.0		
39.0	3	0.91\%	77.0		
41.0			79.0		

Nota: O gráfico abaixo ilustra 99.39\% das observações

Análise das marcações observadas

Repartição por géneros / espécies vegetais

Codigo Planta	Especie	Observações	
	Vegetal	Freq	
6	Cytisus spp.	91	27%
8	Frangula alnus	50	15%
14	Pyrus spp.	48	14%
12	Pinus sylvestris	31	9%
10	Pinus pinaster	27	8%
7	Erica spp.	24	7%
2	Arbutus unedo	16	5%
9	Ilex aquifolium	9	3%
18	Quercus spp.	9	3%
13	Prunus lusitanicus	7	2%
16	Quercus pyrenaica	6	2%
17	Quercus robur	6	2%
11	Pinus spp.	4	1%
4	Chamaecyparis	2	1%
1	Acer pseudoplatanus	1	Residual
3	Betula sp.	1	Residual
5	Chamaespartium tridentatum	1	Residual
15	Quercus rubra	1	Residual
19	Taxus baccata	1	Residual
20	Salix sp.		1

Análise das marcações observadas

Sobrevivência

Código	Estado	Descrição	Observações	
	Freq	$\%$		
1	Especímen vivo	166	66%	
4	Especímen morto	54	22%	
2	Ramo marcado morto	26	10%	
3	Esp. em regeneração	4	2%	
Total		$\mathbf{2 5 0}$	$\mathbf{1 0 0} \%$	

	Frequência absoluta					Frequência relativa			
Espécie / Género	1	2	3	4	Total	1	2	3	4
Arbutus unedo	25	6	2	3	36	69.4	16.7	5.6	8.3
Cytisus spp.	20	2		19	41	48.8	4.9		46.3
Erica spp.	18	1	3		22	81.8	4.5	13.6	
Frangula alnus	31	6		11	48	64.6	12.5		22.9
Pinus pinaster	12	1		6	19	63.2	5.3		31.6
Pinus sylvestris	6			6	12	50.0			50.0
Pyrus spp.	28	3		6	37	75.7	8.1		16.2
Quercus spp.	12	4	1	1	18	66.7	22.2	5.6	5.6

Pág. IV-14

AMEXO V: Observações de animais.

Observações de corços

Observação				Macho			Fêmea			Sexo Indeter				Total
No	Data	Hora	Estacão	Jovem	Adulto	Indeter	Jovem	Adulto	Indeter	Cria	Jovem	Adulto	Indeter	Grupo
10-P	01-Mar-94	15:15	1								1	1	1	3
1-P	19-Nov-93	12:20	0					1						1
11-P	02-Mar-94	09:35	1										2	2
12-	02-Mar-94	19:40	1		1			1						2
4 -	26-Nov-93	16:25	0					1						1
7-P	19-Jan-94	11:00	I										1	1
9-	01-Mar-94	14:10	1									1		1
13-P	03-Mar-94	08:10	1		1									1
15-P	04-Mar-94	09:20	1		1			1						2
16-E	08-Mar-94	09:10	1			1								1
17-E	09-Mar-94	08:45	1										1	1
23-P	23-Mar-94	08:30	P					1						1
24-P	05-Apr-94	09:05	P									1		1
26-E	13-Apr-94	08:02	P		1									1
27-E	13-Apr-94	08:20	p										1	1
28	09-Apr-94	00:30	P		1									1
29	09-Apr-94	00:30	P		1									1
30	15-Apr-94		P					1						1
31	20-Apr-94	15:40	P										1	1
33	20-Apr-94	22:00	P		1									1
35	28-Apr-94	09:00	P	1										1
36	30-Apr-94		P	1										1
37	30-Apr-94	21:00	P				1							1
38	30-Apr-94	12:00	P	1										1
39-P	07-May-94	11:35	P										1	1
40-P	07-May-94	12:05	P										1	1
66	19-Apr-94	13:30	P										1	1
67	22-Apr-94	13:45	P	1										1
68	20-Apr-94	14:35	P	1										1
69	20-Apr-94	09:00	P		1									1
70	22-Apr-94	10:50	P				1							1
71	21-Apr-94	09:00	P					1						1
72	26-Apr-94	10:46	P		1									1
73	28-Apr-94	09:35	P		1									1
74	03-May-94	08:25	P		1									1
75	03-May-94		P				1							1
45	20-Jan-94	14:40	1					1					1	2
46	24-Jan-94	10:30	1	1			2							3
47	08-Feb-94	14:30	1		1			1						2
48	13-Feb-94	10:50	1		1			1						2
49	23-Feb-94	09:20	1				2							2
50	10-Sep-93	08:00	V					1						1
51	28-Oct-93	10:40	0					1						1
52	27-Nov-93	10:50	0					1		1				2
53	04-Mar-94	09:00	I		1		2	2						5

Observações de corços

(animais observados em percurso-P animais obervados em esperas-E)

Observação				Macho			Fêmea			Sexo Indeter				Total Grupo
N°	Data	Hora	Estação	Jovem	Adulto	Indeter	Jovem	Adulto	Indeter	Cria	Jovem	Adulto	Indeter	
54	04-Mar-94	09:30	1					1						1
55	07-Mar-94	09:20	1				$1+1$	1						1
56	08-Mar-94	18:00	1	1				1						2
57	16-Mar-94	10:00	I		1									1
58	18-Mar-94	08:00	I		1									1
59	18-Mar-94	07:50	I		1									1
60	21-Mar-94	07:45	P		1									1
61	22-Mar-94	08:30	P	1										1
62	27-Mar-94	11:00	P					1						1
63	26-Mar-94	08:15	P		1			1						2
64	12-Apr-94	08:35	P	1										1
65	12-Apr-94	10:20	P		1									1
43	13-Jan-94	10:15	1									1		1
44	07-Mar-94		1			1								1
76	26-Jan-93	10:00	1		1			1						2
77	28-Jan-93	12:10	I					1						1
78	29-Jan-93	11:00	I				1							1
79	06-Feb-93	10:50	1				1							1
80	11-Feb-93	08:30	I		1			2						3
81	18-Feb-93	14:00	I					1						1
82	18-Feb-93	15:30	I		1									1
83	01-Mar-93	15:30	1					1						1
84	11-Mar-93	15:20	1									1		1
85	17-Mar-93	10:00	1										2	2
86	18-Mar-93	08:20	1		1									1
87	30-Mar-93	09:10	P		1			1						2
88	01-Apr-93	12:00	P	1										1
89	01-Apr-93	09:25	P					1						1
90	02-Apr-93	12:00	P				1							1
91	07-Apr-93	10:45	P								2			2
92	20-May-93	07:20	P	1										1
93	20-May-93	10:30	P				1							1
94	21-May-93	08:50	P		1									1
95	21-May-93	18:55	P					1						1
96	25-May-93	08:35	P		1									1
97	25-May-93	08:30	P	1										1
98	27-May-93	20:00	P					1						1
99	27-May-93	15:00	P		1									1
100	31-May-93	08:35	P					1						1
101	07-Jun-93	10:30	P					2						2
102	08-Jun-93	09:30	P					1						1
103	31-Jul-93	10:00	V					1						1
104	23-Jul-93	09:40	V	1										1
105	10-Sep-93	08:00	V						1					1
106	13-Aug-93	11:00	V					1						1

Observações de corços

(animais observados em percurso-P
 animais obervados em esperas-E)

Observação				Macho			Fêmea			Sexo Indeter				Total Grupo
N°	Data	Hora	Estacão	Jovem	Adulto	Indeter	Jovem	Adulto	Indeter	Cria	Jovem	Adulto	Indeter	
107	28-Oct-93	10:40	0					1						1
115	15-Jun-93	14:00	P		1				1					2
116	15-Jun-93	08:30	P		1				1					2
117	15-Nov-93		0									1		1
118	15-Dec-93	16:00	0									1		1
119	15-Jan-94		1										2	2
120	15-Jan-94		1										1	1
121	15-Feb-94		1			1								1
122	15-Feb-94		1						1					1
123	15-Aug-93		V						1					1
124	15-Jan-94		1			1								1
125	15-Feb-94		1						2					2
126	15-Jan-94		1						1					1
127	15-Oct-93		0									1		1
128	15-Dec-93		0										2	2
129	15-Oct-93		0										1	1
130	15-Sep-93		V			1			1					2
131	15-Feb-94		1						1					1
132	15-Jan-93		1										1	1
133	15-Feb-94		1										1	1
134	15-Feb-94		1			1								1
135	15-Dec-93		0										2	2
136	01-Oct-93		0			1			2					3
137	01-Sep-93		V										1	1
138	01-Apr-94		P	1									1	2
139	01-Apr-94		P										1	1
140	01-Apr-94		P										6	6
146	01-Feb-94		1										1	1
147	15-Mar-93		1						1					1
142	15-Apr-94		P						1					1
141	15-May-93		P										3	3
143	15-May-93		P			1			1					2
144	15-May-93		P			1								1
148	15-Aug-93		V										1	1
145	15-Dec-93		0										1	1
149	15-Jan-93		1			1							1	2
154	01-Jun-94	15:10	P		1	1								2
155	01-Jun-94	15:30	p				1						1	2
156	01-Jun-94	08:50	p	1			1							2
157	19-Feb-94	11:15	1	1										1
158	17-Feb-94	15:00	1				1						1	2
159	31-May-94	10:50	P				1							1
160	04-Jun-94		P	1										1
162	28-Apr-94	08:50	P				1							1
163	29-Jul-93	09:00	V	1			1							2

Observações de corços
(animais observados em percurso-P
animais obervados em esperas-E)

Observação				Macho			Fêmea			Sexo Indeter				Total Grupo
N°	Data	Hora	Estação	Jovem	Adulto	Indeter	Jovem	Adulto	Indeter	Cria	Jovem	Adulto	Indeter	
164	01-Jun-94	10:30	P					1			1			2
165	14-Jun-94	10:00	P						1					1
168	19-May-94	10:30	P					1						1
169	30-Apr-94		P	1										1
171	22-Jun-94	08:25	V									1		1
172	22-Jun-94	08:35	V				1							1
173	22-Jun-94	10:00	V	1							1			2
178	01-Jun-94		P						2					2
179	05-Jul-94	10:30	V	1										1
180	15-Mar-94		1		1				4					5
181	29-Jun-94	07:20	V					1						1
182	28-Jun-94	01:04	V		1			1						2
184	01-Jul-94	09:00	V		1									1
185	03-Jul-94	07:30	\checkmark					1						1
186	11-Jul-94	08:10	V					1						1
187	12-Jul-94	10:40	V		1									1
188	18-Jul-94	20:30	V					1						1
189	20-Jul-94	08:13	V	1										1
190	24-Jul-94	21:45	\checkmark					1						1
191	28-Jul-94	08:35	V					1						1
192	28-Jul-94	08:30	V		1									1
177	02-Aug-94	07:30	V					1		1				2
193	17-Jul-94	07:30	\checkmark		1									1
194	13-Jul-94	10:50	\checkmark		1		2							3
195	13-Jul-94	10:30	V					3						3
196	18-Jul-94	11:45	V				1							1
197	20-Jul-94	14:10	V		1			2		2				5
198	26-Jul-94	15:20	\checkmark					1		2				3
199	26-Jul-94	11:50	V					1						1
200	26-Jul-94	09:50	V					1						1
201	27-Jul-94	16:05	V					1						1
202	28-Jul-94	08:45	V		1									1
203	15-Aug-94		V			1								1
204	18-May-93		P										1	1
41	06-Nov-93	09:30	0		1			1						2
42	13-Nov-93	15:00	0						1					1
213	15-Jul-94		V		1			1						2
214	15-Jul-94	08:00	V		1			1					4	6
215	15-Jul-94		V							1				1
207	07-Aug-94	20:50	V					1						1
208	11-Aug-94	16:25	V			1								1
205	08-Sep-94	11:00	V					1		1				2
211	10-Sep-94		V			1								1
209	19-Sep-94	20:00	V					1						1
210			0		1			2						3
212	15-Oct-94		0			1			1	1				3
206	30-Oct-94	07:50	0							1				1
216	08-Sep-94		V					1		1				2

Tabela 1: Frequência absoluta das observações de grupos / estação do ano

Estação	Dimensão dos grupos						Total
	1	2	3	4	5	$>=6$	
Inverno	32	14	3		2		51
Primavera	53	13	1			1	68
Verão	33	8	3		1	1	46
Outono	11	4	2				17
Total	129	39	9		3	2	182

Tabela 2: Frequência relativa das observações de grupos / estação do ano

Estação	Dimensão dos grupos						Total
	1	2	3	4	5	$>=6$	
Inverno	18\%	8\%	2\%		1\%		28.0\%
Primavera	29\%	7\%	1\%			1\%	37.4\%
Verão	18\%	4\%	2\%		1\%	1\%	25.3\%
Outono	6\%	2\%	1\%				9.3\%
Total	70.9\%	21.4\%	4.9\%		1.6\%	1.1\%	100.0\%

Tabela 3 : \quad Frequência relativa das observações de cada grupo / estação do ano

Estação	Dimensão dos grupos					
	1	2	3	4	5	$>=6$
Inverno	24.8\%	35.9\%	33.3\%		66.7\%	
Primavera	41.1\%	33.3\%	11.1\%			50.0\%
Verão	25.6\%	20.5\%	33.3\%		33.3\%	50.0\%
Outono	8.5\%	10.3\%	22.2\%			

Total	100.0%	100.0%	100.0%		100.0%	100.0%

Tabela 4: Frequência relativa das observações por grupo / estação do ano

Dimensão dos grupos					
Estac̣ão			$	$	1
:---:					
$>=2$					
Inverno					

frequência relativa das observações de grupos por estação do ano

MAEXO VI: Avaliação de potencialidades.

Escala para avaliação de potencialidades

1- Abrigo/Refúgio

* Matos rasteiros < I m de altura; vegetação muito esparsa ou inexistente 0
* Matos densos de 1 a 2 m de altura; plantações recentes; zonas bastante acidentadas 1
* Matos altos com vegetação arbórea dispersa ou bosquetes; povoamentos adultos de resinosas 2
* Povoamentos adultos com sub-bosque 3
2- Alimentação
* Povoamentos adultos (resinosas, exóticas, ...) sem sub-bosque 0
* Matos pouco variados, zonas com afloramentos rochosos 1
* Matos variados, matos com vegetação arbórea dispersa, plantações recentes (com mato) 2
* Carvalhais, folhosas diversas e zonas ripícolas 3
* Lameiros e prados (com interesse alimentar) na orla de zonas de coberto 3
3- Perturbação
* Núcleos urbanos, ocupação humana intensa ao longo de todo o ano (estradas com alcatrão) 0
* Pastoreio (com presença de cães); caça 1
* Turismo (pedestre e todo o terreno) 2
* Sem perturbação 3
4- Água
* Água na quadrícula com vegetação ripícola significativa 2
* Água na quadrícula adjacente; água na quadrícula sem vegetação ripícola significativa 1
* Água além da quadrícula adjacente 0

Ficha de Cálculo do HSI para o corço

Locais	1	2	3	4	5	6	7	8	9	10
Data	6-X-94	9-1X-94	9-1X-94	3-X-94	3-X-94	3-X-94	4-X.94	4-X-94	5-X-94	5-X-94
Variáveis										
Alimentação										
Hс	1.00	1.00	0.84	0.67	0.84	1.00	0.84	1.00	1.00	0.84
Hg	1.00	0.33	0.67	0.67	1.00	0.67	1.00	0.67	1.00	1.00
Mc	0.75	0.50	0.75	0.63	0.50	0.75	0.63	0.63	0.63	0.75
Mg	0.90	0.65	0.90	0.90	0.90	0.65	0.40	0.40	1.00	1.00
Mh	1.00	1.00	1.00	0.50	1.00	1.00	1.00	1.00	0.50	0.50
Ac	1.00	0.63	0.88	1.00	0.25	0.75	0.00	1.00	1.00	1.00
Ag	1.00	0.08	0.50	1.00	0.25	0.33	0.00	1.00	0.33	0.67
Abrigo										
Mh	0.75	0.00	0.75	0.88	0.75	0.75	0.00	0.00	0.50	0.88
Ag	0.50	0.25	0.50	0.50	0.25	0.50	0.00	0.25	0.50	0.50
Tranquilidade										
Rvd	0.25	0.25	0.10	1.00	0.25	0.75	1.00	1.00	1.00	0.75
RVds	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
AHd	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AHds	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Pt	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
HSI	0.93	0.48	0.85	0.78	0.82	0.88	0.43	0.61	0.91	0.91

Legenda :

Hc: composição do estrato herbáceo RVd: Distância a rede viária
$\mathbf{H g}$: grau de coberto do estrato herbáceo RVds: Densidade de rede viária
Mc : composição do estrato arbustivo
Mg: grau de coberto do estrato arbustivo
$\mathbf{M h}$: altura do estrato arbustivo
AHd : Distância a aglomerados humanos
AHds: Densidade de aglomerados humanos

Pt: Pastoreio (espécies)
Ac: composição do estrato arbóreo
Ag: grau de coberto do estrato arbóreo

Formúlas

Variável Alimentação (Val) :

$$
\mathrm{Val}=\left(1,5 \mathrm{Val}_{\mathrm{h}}+2 \mathrm{Val}_{\mathrm{m}}+\mathrm{Val}_{\mathrm{a}}\right) / 4,5
$$

onde

$$
\begin{aligned}
& \mathrm{Val}_{\mathrm{h}}=\left(\mathrm{Hc}^{1.5} \times \mathrm{Hg}\right)^{1 / 2.5} \\
& \mathrm{Val}_{\mathrm{m}}=\left(\mathrm{Mc}^{1.5} \times \mathrm{Mg} \times \mathrm{Mh}\right)^{1 / 3.5} \\
& \mathrm{Val}_{\mathrm{a}}=\left(\mathrm{Ac}^{1.5} \times \mathrm{Ag}\right)^{1 / 2.5} \\
& \mathrm{Val}=\left(1,5 \mathrm{Val}_{\mathrm{h}}+2 \mathrm{Val}_{\mathrm{m}}+\mathrm{Val}_{\mathrm{a}}\right) / 4,5
\end{aligned}
$$

Variável Abrigo (Vab) :

$$
\mathrm{Vab}=\operatorname{MÍNIMO}(1.00, \mathrm{Mh}+\mathrm{Ag})
$$

Tranquilidade (Vt) :

$$
\mathrm{Vt}=(\mathrm{RVd} \times \mathrm{RVds} \times \mathrm{AHd} \times \mathrm{AHds} \times \mathrm{Pt})^{1 / 5}
$$

Ìndice de adequação do habitat (HSI) :

$$
\mathrm{HSI}=(2 \mathrm{Val} \times 2 \mathrm{Vab}+\mathrm{Vt}) / 5
$$

ANEXO VII : Estimativa de densidade.

Animais observados e ouvidos na zona de Calvos e Palheiros

(Escala : 1/25.000)

Legenda :

A,B,..	Animais ouvidos
$\mathbf{1 , 4 , 7 , \ldots}$	Animais observados
\longrightarrow	Direcção de fuga Especímen(s) marcado(s)

Animais observados nas áreas de Calvos e Palheiros

entre 19 de Novembro de 1993 e 19 de Setembro de 1994

Número	Animais observados	Data	Hora
15	1 macho e 1 fêmea	4 Março 94	9:20
27	1 indeterminado	13 Abril 94	8:20
17	1 indeterminado	9 Março 94	8:45
16	1 macho?	8 Março 94	9:10
171	1 macho?	22 Junho 94	8:25
26	1 macho	13 Abril 94	8:02
53	2 fêmeas, 2 fêmeas jovens e 1 macho	4 Março 94	9:00
58	1 macho	18 Março 94	8:00
172	1 fêmea jovem	22 Junho 94	8:35
173	1 macho, 1 fêmea jovem	22 Junho 94	10:00
181	1 fêmea	29 Junho 94	7:20
192	1 fêmea e 1 cria	2 Agosto 94	8:30
4	1 fêmea	26 Novembro 93	16:25
72	1 macho	26 Abril 94	10:46
7	1 indeterminado	19 Janeiro 94	11:00
13	1 macho	3 Março 94	8:10
1	1 fêmea	19 Novembro 93	12:20
205	1 fêmea e 1 cria	8 Setembro 94	11:00
54	1 fêmea	4 Março 94	9:30
24	1 indeterminado	5 Abril 94	9:05
39	1 indeterminado	7 Maio 94	11:35
55	1 fêmea, 1 fêmea jovem, 1 jovem	7 Março 94	9:20
40	1 indeterminado	7 Maio 94	12:05
159	1 fêmea jovem	31 Maio 94	10:50
207	1 fêmea	7 Agosto 94	20:05
209	1 fêmea	19 Setembro 94	20:00

Animais ouvidos nas áreas de Calvos e Palheiros

entre 9 de Março de 1993 e 2 de Agosto de 1994

Letra	Data	Hora
A	9 Março 94	
B	9 Março 94	
C	18 Março 94	8:10
D	18 Março 94	7:50
E	18 Março 94	8:35
F	21 Março 94	7:42
G	21 Março 94	7:45
H	21 Março 94	8:40
I	13 Abril 94	8:08
J	23 Junho 94	6:40
L	23 Junho 94	7:50
M	18 Janeiro 94	11:15
N	18 Janeiro 94	11:45
0	18 Janeiro 94	12:20
P	18 Janeiro 94	11:35
Q	$19 \mathrm{Março} 94$	7:50
R	19 Março 94	7:57
S	19 Março 94	8:20
T	1 Agosto 94	8:00
U	1 Agosto 94	8:05
V	2 Agosto 94	6:40
X	2 Agosto 94	6:45
Z	2 Agosto 94	7:10
α	2 Agosto 94	$9: 30$
β	20 Abril 94	15:40

ANEXO VIII: Modelo das fichas de campo.
$P_{\text {ág. }}$. VIII-1

FICHA DE OBSERVAÇÃO DIRECTA

Altura máxima.
\square

Vento			Precipitação		Temperatura		Nebulosidade	
	muito forte	-	neve	\square	quente	\square	muita (>50\%)	\square
	forte	口	chuva forte	\square	amena	\square	média (25-50\%)	\square
	fraco	\square	chuva fraca	\square	frio	\square	pouca (<25\%)	\square
	sem vento	\square	sem chuva	\square	muito frio	\square	nevoeiro	\square
			granizo	\square			limpo	\square
	nova	\square	q. crescente	\square	cheia	\square	q. minguante	\square
Material recolhido :								

Condições climatéricas:

Perí metro

[^0]$\xrightarrow{-}$
Lua: nova
Notas :

TRILHO ${ }^{0}$ \qquad
PERCURSO N ${ }^{\circ}$ \qquad

Carta 1:25 000 : \qquad Data: \qquad
Hora início: Hora fim : \qquad Duração do percurso : \qquad

Observadores :

\qquad

Condições climatéricas:

Presença de corço assinalada por:

Observação directa : \qquad Ficha n^{o} : \qquad
\qquad
\qquad
\qquad
\qquad

Observação indirecta :

Pegadas		$\begin{aligned} & \mathrm{R} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \square \\ & \square \end{aligned}$	Dejectos	R	$\begin{aligned} & \square \\ & \square \end{aligned}$	Marcação	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~A} \end{aligned}$	\square
Cama:	em terra	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \square \\ & \square \end{aligned}$	Trilho		\square	Esgaravatadelas		\square
	forrada	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \square \\ & \square \end{aligned}$	Som		\square	(n^{o} de gritos)

Outros mamíferos com presença assinalada:

| Garrano (Equus caballus) | - | Doninha (Mustela nivalis) | - | Ovelhas (Ovis sp.) | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Javali (Sus scrofa) | - | Mustelídeo (Martes sp.) | - | Cabras (Capra sp.) | - |
| Lobo (Canis lupus) | - | Marta (Martes martes) | - | Vacas (Bos taurus) | - |
| Raposa (Vulpes vulpes) | - | Fuinha (Martes foina) | - | Cães (Canis familiaris) | - |
| Gato bravo (Felis sylvestris) | - | Lebre (Lepus sp.) | - | | |
| Gineta (Genetta genetta) | - | Coelho (Oryctolagus sp.) | - | | |
| (İdice de presença : | 1 - raro 2 - comum 3- abundante) | | | | |

FICHA DE PERCURSO (2/2)

Marcações :

Espécie Vegetal	Perímetro	Distância mínima ao solo	Altura máxima	Marcação Recente	Marcação Antiga

Vegetação consumida :
\qquad
\qquad
\qquad
\qquad
\qquad

Notas:

\qquad

Trilho : \qquad Data : \qquad 1 \qquad
Observadores : \qquad

N^{0} da Marcação	Espécie vegetal	$\underset{(\mathrm{cm})}{\mathbf{P}}$	Distância mínima ao solo (cm)	Distância máxima ao solo (cm)	$\begin{array}{\|c} \hline \text { Compri- } \\ \text { mento } \\ (\mathrm{cm}) \end{array}$	V/S	Anotações

FICHA DE INQUÉRITO

Fichan ${ }^{0}$ \qquad

1. Distrito \qquad Concelho \qquad

Freguesia

\qquad
Local
Data
$\underline{\square}$
2. Informador \qquad Idade \qquad Profissão \qquad
3. Biótopos de ocorrência regular do corço:

PinhalMatosLameiros
Carvalhal
Carvalhal + PinhalZonas rochosas

Florestas mistascom matos rasteiros
Culturas agrícolas
PradosOutros
\longrightarrow
4. Presença do corço :

- Raro
- Todo o AnoPouco frequente
\square Frequente
$\square \quad$ Primavera
ㅁ Verão
OutonoInverno
- Nascer do dia

ㅁ Durante o dia
$\square \quad$ Pôr-do-sol

- População a aumentarEstável
- A diminuir
- Animais isoladosRebanhos mistosFêmeas com crias

5. Tipo de gado existente / época do ano :

6. Presença de cães vadios :
$\begin{array}{lllllll}\text { Não } \quad \square & \operatorname{Sim} & \square & \text { Raros } & \square & \text { Frequentes }\end{array}$

7. Caça furtiva :

Sim \quad Não
8. Animais observados :

Ficha(s) n^{0} \qquad
\qquad \square
\qquad
\qquad
Local :
Observadores : \qquad

1. Estrato herbáceo

- Composição :
- Grau de coberto :
- Distribuição :

2. Estrato arbustivo

- Composição :
- Grau de coberto :
- Altura :
- Distribuição :

3. Estrato arbóreo

- Composição :
- Grau de coberto :
- Altura :
- Distribuição :
\qquad
\qquad
\qquad
\qquad

4. Distância a estrato herbáceo :

5. Pastoreio

- Espécie : \qquad Cães : \qquad

Notas : \qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Marcações :

 | $\begin{array}{c}\text { Espécie } \\ \text { Vegetal }\end{array}$ |
 | :---: |

 $\widetilde{\square}$

